Skip to main content
Log in

Effect of solid solution impurities on dislocation nucleation during nanoindentation

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Dislocation nucleation in solid solutions of face-centered-cubic metallic materials was studied using nanoindentation. The effects of solute impurities in the copper–nickel system on the formation of dislocations in a previously dislocation-free region were demonstrated to be minimal. The shear stress required to nucleate dislocations in copper is approximately 1.6 GPa, while in nickel a 3.9 GPa shear stress is required. Changes in shear stress for nucleation track closely with changes in elastic modulus showing the nucleation stress is approximately 1/30 to 1/20 of the shear modulus. The expected solid-solution strengthening is identified within the same experimental method, demonstrating unambiguously the fact that solid-solution impurities in this system will impact the propagation of dislocations during plastic deformation but not alter the homogeneous nucleation of dislocations in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.A. Schuh and A.C. Lund: Application of nucleation theory to the rate dependence of incipient plasticity during nanoindentation. J. Mater. Res. 19, 2152 (2004).

    Article  CAS  Google Scholar 

  2. S.A. Syed-Asif and J.B. Pethica: Nanoindentation creep of singlecrystal tungsten and gallium arsenide. Philos. Mag. A 76, 1105 (1997).

    Article  Google Scholar 

  3. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).

    Article  CAS  Google Scholar 

  4. D.F. Bahr, D.E. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  5. A.B. Mann and J.B. Pethica: Role of atomic size asperities in the mechanical deformation of nanocontacts. Appl. Phys. Lett. 69, 907 (1996).

    Article  CAS  Google Scholar 

  6. D.E. Jesson, K.M. Chen, S.J. Pennycook, T. Thundat, and R.J. Warmack: Crack-like sources of dislocation nucleation and multiplication in thin films. Science 268, 1161 (1995).

    Article  CAS  Google Scholar 

  7. D. Tanguy, M. Mareschal, P.S. Lomdahl, T.C. Germann, B.L. Holian, and R. Ravelo: Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations. Phys. Rev. B 68, 144111 (2003).

    Article  Google Scholar 

  8. D.E. Kramer and T. Foecke: Transmission electron microscopy observations of deformation and fracture in nanolaminated Cu–Ni thin films. Philos. Mag. A 82, 3375 (2002).

    Article  CAS  Google Scholar 

  9. C.A. Schuh, T.G. Nieh, and H. Iwasaki: The effect of solid solution W additions on the mechanical properties of nanocrystalline Ni. Acta Mater. 51, 431 (2003).

    Article  CAS  Google Scholar 

  10. J.R. Rice: Dislocation nucleation from a crack tip. An analysis based on the Peierls concept. J. Mech. Phys. Solids 40, 239 (1992).

    Article  CAS  Google Scholar 

  11. Y. Choi, K.J.V. Vliet, J. Li, and S. Suresh: Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94, 6050 (2003).

    Article  CAS  Google Scholar 

  12. T. Zhu, J. Li, K.J.V. Vliet, S. Ogata, S. Yip, and S. Suresh: Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. J. Mech. Phys. Solids 52, 691 (2004).

    Article  CAS  Google Scholar 

  13. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085 (1998).

    Article  CAS  Google Scholar 

  14. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, and M.I. Baskes: Interpretation of indentation size effects. J. Appl. Mech. 69, 433 (2002).

    Article  CAS  Google Scholar 

  15. A.H. Cotrell: Dislocations and Plastic Flow in Crystals (Oxford Press, Oxford, U.K., 1953), pp. 11–12, 53–54.

    Google Scholar 

  16. G.F. Vander Voort: Metallography Principles and Practice (McGraw-Hill, New York, 1984), p. 717.

    Google Scholar 

  17. W.W. Gerberich, J.C. Nelson, E.E. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  18. K.L. Johnson: Contact Mechanics (Cambridge University Press, New York, 1985), pp. 90–104.

    Book  Google Scholar 

  19. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  20. S. Suresh, T.G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scripta Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  21. J.P. Hirth, and J. Lothe: Theory of Dislocations, 2nd ed. (Krieger Publishing, Miami, FL, 1992), pp. 681–685.

    Google Scholar 

  22. M. Pang, D.F. Bahr, and K.G. Lynn: Effects of Zn addition and thermal annealing on yield phenomena of CdTe and Cd0.96Zn0.04Te single crystals by nanoindentation. Appl. Phys. Lett. 82, 1200 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Bahr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bahr, D.F., Vasquez, G. Effect of solid solution impurities on dislocation nucleation during nanoindentation. Journal of Materials Research 20, 1947–1951 (2005). https://doi.org/10.1557/JMR.2005.0244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0244

Navigation