Skip to main content
Log in

Atomic structure, electrical properties, and infrared range optical properties of diamondlike carbon films containing foreign atoms prepared by pulsed laser deposition

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We investigated the atomic structure, electrical, and infrared range optical properties of diamondlike carbon (DLC) films containing alloy atoms (Cu, Ti, or Si) prepared by pulsed laser deposition. Radial distribution function (RDF) analysis of these films showed that they are largely sp 3 bonded. Both pure DLC and DLC + Cu films form a Schottky barrier with the measuring probe, whereas DLC + Ti films behave like a linear resistor. Pure DLC films and those containing Cu exhibit p-type conduction, and those containing Ti and Si have n-type conduction. Photon-induced conduction is observed for pure DLC, and the mechanism is discussed in terms of low-density gap states of highly tetrahedral DLC. Our results are consistent with relative absence of gap states in pure DLC, in accordance with theoretical prediction by Drabold et al. 37 Temperature dependence of conductivity of DLC + Cu shows a behavior σ exp(−B/T 1/2), instead of the T −1/4 law (Mott–Davis law). Contributions from band-to-band transitions, free carriers, and phonons to the emissivity spectrum are clearly identified in pure DLC films. The amorphous state introduces a large contribution from localized states. Incorporation of a small amount of Si in the DLC does not change the general feature of emissivity spectrum but enhances the contribution from the localized states. Cu and Ti both enhance the free carrier and the localized state contributions and make the films a black body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ball, Nature 391, January 8, 1998.

  2. P.W. Atkins, Physical Chemistry, 5th ed. (W.H. Freeman, San Francisco, CA, 1994).

    Google Scholar 

  3. J. Robertson, Prog. Solid Stat Chem. 21, 199 (1991).

    Article  CAS  Google Scholar 

  4. A.A. Voevodin and M.S. Donley, Surf. Coat. Technol. 82, 199 (1996).

    Article  CAS  Google Scholar 

  5. W.I. Milne, J. Non-Cryst. Solids 198–200, 605 (1996).

    Article  Google Scholar 

  6. K. Enke, Mater. Sci. Forum 52–53, 559 (1990).

    Google Scholar 

  7. Covalently Bonded Disordered Thin-Film Materials, edited by M.P. Siegal, W.I. Milne, and J.I. Jaskie (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA, 1998).

  8. J. Krishnaswamy, A. Rengan, J. Narayan, K. Vedom, and C.J. McHorgue, Appl. Phys. Lett. 54, 2455 (1989).

    Article  CAS  Google Scholar 

  9. T. Sato, S. Furuno, S. Ifuchi, and M. Hanabusa, Jpn. J. Appl. Phys. 26, 1487 (1987).

    Article  Google Scholar 

  10. D.L. Pappas, K.L. Saenger, J. Bruley, W. Krakow, and J.J. Cuomo, J. Appl. Phys. 71, 5672 (1992).

    Article  Google Scholar 

  11. E.A. Rohlfing, J. Chem. Phys. 89, 6103 (1988).

    Article  CAS  Google Scholar 

  12. M. Chhowalla, Y. Yin, G.A.J. Amaratunga, D.R. McKenzie, and Th. Frauenheim, Diamond Relat. Mater. 6, 207 (1997).

    Article  CAS  Google Scholar 

  13. J. Kulik, Y. Lifshitz, G.D. Lempert, J.W. Rabalais, and D. Marton, J. Appl. Phys. 76, 5063 (1994).

    Article  CAS  Google Scholar 

  14. Q. Wei, R.J. Narayan, J. Narayan, S. Sankar, and A.K. Sharma, Mater. Sci. Eng. B 53, 262 (1998).

    Article  Google Scholar 

  15. Q. Wei, R.J. Narayan, A.K. Sharma, J. Sankar, and J. Narayan, J. Vac. Sci. Technol. 17, 3406 (1999).

    Article  CAS  Google Scholar 

  16. K. Ebihara, T. Ikegami, T. Matsumoto, H. Nishimoto, S. Maeda, and K. Harada, J. Appl. Phys. 66, 4996 (1989).

    Article  CAS  Google Scholar 

  17. N.M. Ravindra, S. Abedrabbo, W. Chen, F.M. Tong, A.K. Nanda, and A.C. Speranza, IEEE Trans. Semicond. Manufact. 11, 30 (1998).

    Article  Google Scholar 

  18. S. Prawer, K.W. Nugent, Y. Lifshitz, G.D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Diamond Relat. Mater. 5, 433 (1996).

    Article  CAS  Google Scholar 

  19. D.J.H. Cockayne and D.R. McKenzie, Acta Crystallogr. A 44, 870 (1988).

    Article  Google Scholar 

  20. D.F.R. Mildner and J.M. Carpenter, J. Non-Cryst. Solids 47, 391 (1982).

    Article  CAS  Google Scholar 

  21. F. Li and J.S. Lannin, Phys. Rev. Lett. 65, 1905 (1991).

    Article  Google Scholar 

  22. J.E. Field, Properties of Diamond (Academic Press, San Diego, CA, 1979).

    Google Scholar 

  23. D.C. Green, D.R. McKenzie, and P.B. Lukins, Mater. Sci. Forum, 52–53, 103 (1990).

    Google Scholar 

  24. P.A. Gaskell, A. Saeed, P. Chieux, and D.R. McKenzie, Phys. Rev. Lett. 67, 1286 (1991).

    Article  CAS  Google Scholar 

  25. D.R. McKenzie, D. Muller, and B.A. Pailthorpe, Phys. Rev. Lett. 67, 773 (1991).

    Article  CAS  Google Scholar 

  26. B.T. Boiko, L.S. Palatnik, and A.S. Derevyanchenko, Sov. Phy. Dokl. 13(3), 237 (1968).

    Google Scholar 

  27. C.Z. Wang and K.M. Ho, Phys. Rev. Lett. 71, 1184 (1993).

    Article  CAS  Google Scholar 

  28. Th. Frauenheim, P. Blaudech, U. Stephan, and G. Jungnickel, Phys. Rev. B 48, 4823 (1993).

    Article  CAS  Google Scholar 

  29. A.F. Myers, M.Q. Ding, S.M. Camphausen, W.B. Choi, J.J. Cuomo, and J.J. Hren, in Covalently Bonded Disordered Thin-Film Materials, edited by M.P. Siegal, W.I. Milne, and J.I. Jaskie (Mater. Res. Soc. Symp. Proc. 498, Warrendale, PA, 1998), p. 83.

  30. Q. Wei (unpublished work).

  31. S.J. Dikshit, P. Lele, S.B. Ogale, and S.T. Kshirsagar, J. Mater. Res. 11, 2236 (1996).

    Article  CAS  Google Scholar 

  32. O. Madelung, Introduction to Solid-State Theory (Springer, Berlin, 1996).

    Google Scholar 

  33. P. Fallon, V.S. Veerasamy, C.A. Davis, J. Robertson, G.A.J. Amaratunga, W.I. Milne, and J. Koskinen, Phys. Rev. B 48, 4877 (1993).

    Article  Google Scholar 

  34. A.G. Milnes, Deep Impurities in Semiconductors (John Wiley & Sons, New York, 1973).

    Google Scholar 

  35. N.F. Mott and E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd ed. (Clarendon Press, Oxford, United Kingdom, 1979).

    Google Scholar 

  36. G.A.J. Amaratunga, J. Robertson, V.S. Veerasamy, W.I. Milne, and D.R. McKenzie, Diamond Relat. Mater. 4, 637 (1995).

    Article  CAS  Google Scholar 

  37. D.A. Drabold, P.A. Fedders, and M.P. Grumbach, Phys. Rev. B 54, 5480 (1996).

    Article  CAS  Google Scholar 

  38. J.P. Sullivan and T.A. Friedmann, in Specialist Meeting on Amorphous Carbon (Cambridge University, World Scientific, Singapore, 1997).

    Google Scholar 

  39. J. Stankiewicz, S. von Molnar, and W. Giriat, Phys. Rev. B 33, 3573 (1986).

    Article  CAS  Google Scholar 

  40. W.N. Shafarman, T.G. Castner, J.S. Brooks, K.P. Martin, and M.J. Naughton, Phys. Rev. Lett. 56, 980 (1986).

    Article  CAS  Google Scholar 

  41. A.L. Efros and B.I. Shklovskii, J. Phys. C: Solid State Phys. 8, L49 (1975).

    Article  CAS  Google Scholar 

  42. E.M. Hamilton, J.A. Cross, and C.J. Adkins, in Proceedings of the International Conference on Amorphous and Liquid Semiconductors, edited by J. Stuke and W. Brenig (Taylor & Francis, London; Halsted Press, New York 1974), p. 1225.

    Google Scholar 

  43. A. Bozhko, A. Ivanov, M. Berrettoni, S. Chudinov, S. Stizza, V. Dorfman, and B. Pypkin, Diamond Relat. Mater. 4, 488 (1995).

    Article  CAS  Google Scholar 

  44. R. Grigorovici, A. Devenyi, A. Gheorghia, and A. Belu, J. Non-Cryst. Solids 8–10, 793 (1972).

    Article  Google Scholar 

  45. T. Sato, Jpn. J. Appl. Phys. 6, 339 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Q., Sankar, J., Sharma, A.K. et al. Atomic structure, electrical properties, and infrared range optical properties of diamondlike carbon films containing foreign atoms prepared by pulsed laser deposition. Journal of Materials Research 15, 633–641 (2000). https://doi.org/10.1557/JMR.2000.0094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2000.0094

Navigation