Skip to main content
Log in

Determination of displacement vector on 180° domain boundary and polarization arrangements in lead titanate crystals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

180° domain boundaries in flux-grown lead titanate single crystals show intriguing domain boundary extreme fringe contrast using transmission electron microscopy. Symmetrically distributed domain boundaries with alternate contrast have been observed, indicating that opposite displacement vectors exist one by one at boundaries. If appropriate reflection vectors were employed, an inclined domain boundary shows reversed fringe contrast. An analysis based upon the two-beam dynamical theory and a rule similar to stacking-fault contrast analysis was employed to predict the geometric configuration of a 180° domain boundary using the extreme fringe contrast (EFC) behavior. Appropriately choosing reflection vectors and utilizing the EFC reversal, a displacement vector as well as the polarization vector arrangement across a 180° domain boundary can be unambiguously identified. Employing the information derived from diffraction patterns and a tilting experiment across a nearby 90° boundary, the whole polarization configuration can be uniquely determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Zhang, W. Y. Pan, S. J. Jang, and L. E. Cross, J. Appl. Phys. 64 (11), 6445 (1988).

    Article  CAS  Google Scholar 

  2. H. Dederiches and G. Arlt, Ferroelectrics 68, 281 (1986).

    Article  Google Scholar 

  3. W. J. Merz, Phys. Rev. 88, 421 (1952).

    Article  CAS  Google Scholar 

  4. J. A. Hooton and W. J. Merz, Phys. Rev. 98, 409 (1955).

    Article  CAS  Google Scholar 

  5. G. Y. Robinson and R. M. White, Appl. Phys. Lett. 10, 320 (1967).

    Article  CAS  Google Scholar 

  6. G. King and E. K. Goo, J. Am. Ceram. Soc. 73 (6), 1534 (1990).

    Article  CAS  Google Scholar 

  7. G. King, E. K. Goo, T. Yamamoto, and K. Okazaki, J. Am. Ceram. Soc. 71 (6), 454 (1988).

    Article  CAS  Google Scholar 

  8. B. M. Park and S. J. Chung, J. Am. Ceram. Soc. 77 (12), 3193 (1994).

    Article  CAS  Google Scholar 

  9. Y. H. Hu, H. M. Chan, Z. X. Wen, and M. P. Harmer, J. Am. Ceram. Soc. 69 (8), 594 (1986), and references therein.

  10. M. Tanaka and G. Honjo, J. Phys. Soc. Jpn. 19, 954 (1964).

    Article  CAS  Google Scholar 

  11. V. V. Shakmanov, G. V. Spivak, and S. I. Yakunin, Sov. Phys.-Solid State 12 (8), 1827 (1971).

    Google Scholar 

  12. B. G. Demczyk, R. S. Ray, and G. Thomas, J. Am. Ceram. Soc. 73 (3), 615 (1990).

    Article  CAS  Google Scholar 

  13. G. Shirane, S. Hoshino, and K. Suzuki, Phys. Rev. 80, 1105 (1950).

    Article  CAS  Google Scholar 

  14. H. D. Megaw, Proc. Roy. Soc. A 189, 261 (1947).

    Google Scholar 

  15. G. Shirane and S. Hoshino, J. Phys. Soc. Jpn. 6, 265 (1951).

    Article  CAS  Google Scholar 

  16. T. J. Parker and J. C. Burfoot, Brit. J. Appl. Phys. 17, 207 (1966).

    Article  CAS  Google Scholar 

  17. C. C. Chou, L. C. Yang, and C. M. Wayman, Mater. Chem. Phys. 36, 57 (1993).

    Article  CAS  Google Scholar 

  18. C. C. Chou, S. M. Tsai, B. N. Sun, Y. Huang, L. C. Yang, and C. M. Wayman, Proc. Ann. Conf. Chinese Soc. for Mat. Sci. 2, 83 (1993).

    Google Scholar 

  19. C. C. Chou, Y. Huang, B. N. Sun, L. C. Yang, and C. M. Wayman, Advanced Materials ‘93, I/B: Magnetic, Fullerene, Dielectric, Ferroelectric, Diamond and Related Materials, edited by M. Homma, E. Osawa, M. Yasufuku, M. Wakatsuki, and N. Ichinose, Trans. Mater. Res. Soc. Jpn. 14B, 1619 (1994).

    CAS  Google Scholar 

  20. E. A. Little, Phys. Rev. 98, 78 (1955).

    Google Scholar 

  21. R. Gevers, J. Van Landuyt, and S. Amelinckx, Phys. Status Solidi 11, 689 (1965).

    Article  Google Scholar 

  22. R. Gevers, P. Delavignette, H. Blank, and S. Amelinckx, Phys. Status Solidi 4, 383 (1964).

    Article  Google Scholar 

  23. R. Gevers, P. Delavignette, J. Van Landuyt, and S. Amelinckx, Phys. Status Solidi 5, 595 (1964).

    Article  CAS  Google Scholar 

  24. R. Gevers, H. Blank, and S. Amelinckx, Phys. Status Solidi 13, 449 (1966).

    Article  CAS  Google Scholar 

  25. T. Malis and H. Gleiter, J. Appl. Phys. 47, 5196 (1976).

    Article  Google Scholar 

  26. C. C. Chou and C. M. Wayman, Mater. Trans. JIM 33 (3), 306 (1992).

    Article  CAS  Google Scholar 

  27. C. T. Suchicital, Ph.D. Dissertation, University of Illinois (1988).

  28. C. C. Chou, C. S. Chen, and D. Y. Tseng, Mater. Chem. Phys. 45, 103 (1996).

    Article  CAS  Google Scholar 

  29. J. W. Edington, Practical Electron Microscopy in Materials Science (Van Nostrand Reinhold Co., New York, 1976), pp. 118–134.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, CC., Wayman, C.M. Determination of displacement vector on 180° domain boundary and polarization arrangements in lead titanate crystals. Journal of Materials Research 12, 457–466 (1997). https://doi.org/10.1557/JMR.1997.0067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0067

Navigation