Skip to main content

Advertisement

Log in

Graphene-based photonic synapse for multi wavelength neural networks

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

A synapse is a junction between two biological neurons, and the strength, or weight of the synapse, determines the communication strength between the neurons. Building a neuromorphic (i.e. neuron isomorphic) computing architecture, inspired by a biological network or brain, requires many engineered synapses. Furthermore, recent investigation in neuromorphic photonics, i.e. neuromorphic architectures on photonics platforms, have garnered much interest to enable high-bandwidth, low-latency, low-energy applications of neural networks in machine learning and neuromorphic computing. We propose a graphene-based synapse model as a core element to enable large-scale photonic neural networks based on on-chip multiwavelength techniques. This device consists of an electro-absorption modulator embedded in a microring resonator. We also introduce an encoding protocol that allows for the representation of synaptic weights on our photonic device with 15.7 bits of resolution using current control hardware. Recent work has suggested that graphene-based modulators could operate in excess of 100 GHz. Combined with our work, such a graphene-based synapse could enable applications for ultrafast and online learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Strubell, A. Ganesh, and A. McCallum, Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, no. 1, 3645 (2019).

    Book  Google Scholar 

  2. P. R. Prucnal and B. J. Shastri. Neuromorphic Photonics (CRC Press, 2017).

    Book  Google Scholar 

  3. T. Ferreira de Lima, H.-T. Peng, A.N. Tait, M.A. Nahmias, H.B. Miller, B.J. Shastri, and P.R. Prucnal, J. Light. Technol. 37, 1515–1534 (2019).

    Article  Google Scholar 

  4. A.N. Tait, T. Ferreira de Lima, E. Zhou, A.X. Wu, M.A. Nahmias, B.J. Shastri, and P.R. Prucnal, Sci. Rep. 7, 7430 (2017).

    Article  Google Scholar 

  5. J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice, Nature 569, 208–214 (2019).

    Article  CAS  Google Scholar 

  6. Y. Shen, N.C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun, S. Zhao, H. Larochelle, D. Englund, and M. Soljai, Nat. Photon. 11, 441–446 (2017).

    Article  CAS  Google Scholar 

  7. J.M. Shainline, S.M. Buckley, R.P. Mirin, and S.W. Nam, Phys. Rev. Appl. 7, 034013 (2017).

    Article  Google Scholar 

  8. A.N. Tait, M.A. Nahmias, B.J. Shastri, and P.R. Prucnal, J. Light. Technol. 32, 4029–4041 (2014).

    Article  Google Scholar 

  9. A.N. Tait, T. Ferreira de Lima, M.A. Nahmias, H.B. Miller, H.-T. Peng, B.J. Shastri, and P.R. Prucnal, Phys. Rev. Appl. 11, 064043 (2019).

    Article  CAS  Google Scholar 

  10. C. Huang, S. Bilodeau, T. Ferreira de Lima, A.N. Tait, P.Y. Ma, E.C. Blow, A. Jha, H.-T. Peng, B.J. Shastri, and P.R. Prucnal, APL Photonics 5, 040803 (2020).

    Article  Google Scholar 

  11. M. A. Nahmias, T. Ferreira de Lima, A. N. Tait, H. Peng, B. J. Shastri and P. R. Prucnal, IEEE J. Sel. Top. Quantum Electron. 26, 1, (2020).

    Article  Google Scholar 

  12. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature 474}, 64 (2011).

    Article  CAS  Google Scholar 

  13. C.T. Phare, Y.-H.D. Lee, J. Cardenas, and M. Lipson, Nat. Photon. 9, 511–515 (2015).

    Article  CAS  Google Scholar 

  14. H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, Optica 6, 84–91 (2019).

    Article  CAS  Google Scholar 

  15. A.N. Tait, H. Jayatilleka, T. Ferreira De Lima, P.Y. Ma, M.A. Nahmias, B.J. Shastri, S. Shekhar, L. Chrostowski, and P.R. Prucnal, Opt. Express 26, 26422 (2018).

    Article  CAS  Google Scholar 

  16. R. Amin, Z. Ma, R. Maiti, S. Khan, J.B. Khurgin, H. Dalir, and V.J. Sorger, Appl. Opt. 57, D130 (2018).

    Article  Google Scholar 

  17. Lumerical Inc. https://www.lumerical.com/products/ (Accessed 28 July 2020)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marquez, B.A., Morison, H., Guo, Z. et al. Graphene-based photonic synapse for multi wavelength neural networks. MRS Advances 5, 1909–1917 (2020). https://doi.org/10.1557/adv.2020.327

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2020.327

Navigation