Skip to main content
Log in

Investigating the Roles of Crystallizable and Glassy Switching Segments within Multiblock Copolymer Shape-Memory Materials

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The variation of the molecular architecture of multiblock copolymers has enabled the introduction of functional behaviour and the control of key mechanical properties. In the current study, we explore the synergistic relationship of two structural components in a shape-memory material formed of a multiblock copolymer with crystallizable poly(ε-caprolactone) and crystallizable poly[oligo(3S-iso-butylmorpholine-2,5-dione)] segments (PCL-PIBMD). The thermal and structural properties of PCL-PIBMD films were compared with PCL-PU and PIBMD-PU, investigated by means of DSC, SAXS and WAXS measurements. The shape-memory properties were quantified by cyclic, thermomechanical tensile tests, where deformation strains up to 900% were applied for programming PCL-PIBMD films at 50 °C. Toluene vapor treatment experiments demonstrated that the temporary shape was fixed mainly by glassy PIBMD domains at strains lower than 600%, with the PCL contribution to fixation increasing to 42±2% at programming strains of 900%. This study into the shape-memory mechanism of PCL-PIBMD provides insight into the structure-function relation in multiblock copolymers with both crystallizable and glassy switching segments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. K. Julich-Gruner, C. Löwenberg, A. T. Neffe, M. Behl and A. Lendlein, Macromolecular Chemistry and Physics 214 (5), 527–536 (2012).

    Article  Google Scholar 

  2. M. Behl, U. Ridder, Y. Feng, S. Kelch and A. Lendlein, Soft Matter 5 (3), 676–684 (2009).

    Article  CAS  Google Scholar 

  3. T. Xie, Polymer 52 (22), 4985–5000 (2011).

    Article  CAS  Google Scholar 

  4. J. Hu, Y. Zhu, H. Huang and J. Lu, Progress in Polymer Science 37 (12), 1720–1763 (2012).

    Article  CAS  Google Scholar 

  5. X. J. Han, Z. Q. Dong, M. M. Fan, Y. Liu, Y. F. Wang, Q. J. Yuan, B. J. Li and S. Zhang, Macromolecular rapid communications 33 (12), 1055–1060 (2012).

    Article  CAS  Google Scholar 

  6. A. Lendlein, H. Jiang, O. Jünger and R. Langer, Nature 434 (7035), 879–882 (2005).

    Article  CAS  Google Scholar 

  7. M. Y. Razzaq, M. Anhalt, L. Frormann and B. Weidenfeller, Materials Science and Engineering: A 444 (1), 227–235 (2007).

    Article  Google Scholar 

  8. M. Y. Razzaq and L. Frormann, Polymer Composites 28 (3), 287–293 (2007).

    Article  CAS  Google Scholar 

  9. A. Lendlein and S. Kelch, Angewandte Chemie International Edition 41 (12), 2034–2057 (2002).

    Article  CAS  Google Scholar 

  10. P. T. Mather, X. Luo and I. A. Rousseau, Annual Review of Materials Research 39, 445–471 (2009).

    Article  CAS  Google Scholar 

  11. C. Min, W. Cui, J. Bei and S. Wang, Polymers for Advanced Technologies 16 (8), 608–615 (2005).

    Article  CAS  Google Scholar 

  12. K. Kratz, U. Voigt and A. Lendlein, Advanced Functional Materials 22 (14), 3057–3065 (2012).

    Article  CAS  Google Scholar 

  13. H. Matsumoto, T. Ishiguro, Y. Konosu, M. Minagawa, A. Tanioka, K. Richau, K. Kratz and A. Lendlein, European Polymer Journal 48 (11), 1866–1874 (2012).

    Article  CAS  Google Scholar 

  14. Y. Feng, M. Behl, S. Kelch and A. Lendlein, Macromolecular Bioscience 9 (1), 45–54 (2009).

    Article  CAS  Google Scholar 

  15. W. Yan, L. Fang, U. Noechel, K. Kratz and A. Lendlein, Express Polymer Letters 9 (7), 624–635 (2015).

    Article  CAS  Google Scholar 

  16. W. Yan, L. Fang, U. Noechel, K. Kratz and A. Lendlein, Journal of Polymer Science Part B: Polymer Physics 54 (19), 1935–1943 (2016).

    Article  CAS  Google Scholar 

  17. T. Sauter, M. Heuchel, K. Kratz and A. Lendlein, Polymer Reviews 53 (1), 6–40 (2013).

    Article  CAS  Google Scholar 

  18. P. Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In: Kolloidchemie Ein Lehrbuch, Chemische Technologie in Einzeldarstellungen. (Springer, Berlin, 1912).

    Book  Google Scholar 

  19. N. Stribeck, X-ray scattering of soft matter. (Springer Science & Business Media, Berlin, 2007).

    Google Scholar 

  20. W. Yan, T. Rudolph, U. Noechel, O. Gould, M. Behl, K. Kratz and A. Lendlein, Macromolecules 51 (12), 4624–4632 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Lendlein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, W., Fang, L., Noechel, U. et al. Investigating the Roles of Crystallizable and Glassy Switching Segments within Multiblock Copolymer Shape-Memory Materials. MRS Advances 3, 3741–3749 (2018). https://doi.org/10.1557/adv.2018.590

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.590

Navigation