Skip to main content
Log in

A Model for Estimating Chemical Potentials in Ternary Semiconductor Compounds: the Case of InGaAs

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In ab initio modeling of doped semiconductors, estimation of defect formation energies involving substitutional sites of ternary compounds is ambiguous due to an approximate treatment of chemical potential of the substituted atoms. We propose a model of assigning fractions of the formation energy to individual atoms of a ternary semiconductor and test it on InGaAs. The accuracy of this approximation is on the order of 0.1 eV/atom and is expected to be sufficient for many practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Legrain, O. Malyi, S. Manzhos, J. Power Sources, 278 (2015) 197–202.

    Article  CAS  Google Scholar 

  2. F. Legrain, O.I. Malyi, S. Manzhos, Comp. Mater. Sci., 94 (2014) 214–217.

    Article  CAS  Google Scholar 

  3. V.V. Kulish, O.I. Malyi, M.F. Ng, P. Wu, Z. Chen, RSC Adv., 3 (2013) 4231–4236.

    Article  CAS  Google Scholar 

  4. W.H. Wan, Q.F. Zhang, Y. Cui, E.G. Wang, J. Phys. Condens. Matter, 22 (2010) 415501.

    Article  Google Scholar 

  5. F. Legrain, S. Manzhos, J. Chem. Phys., 146 (2017) 034706.

    Article  Google Scholar 

  6. C.R. Leao, A. Fazzio, A.J.R. da Silva, Nano Lett., 8 (2008) 1866–1871.

    Article  CAS  Google Scholar 

  7. H. Peelaers, B. Partoens, F.M. Peeters, Nano Lett., 6 (2006) 2781–2784.

    Article  CAS  Google Scholar 

  8. A. Chroneos, Mater. Sci. Semicon. Proc., 15 (2012) 691–696.

    Article  CAS  Google Scholar 

  9. P. Kratzer, E. Penev, M. Scheffler, Appl. Surf. Sci., 216 (2003) 436–446.

    Article  CAS  Google Scholar 

  10. J. Wang, B. Lukose, M.O. Thompson, P. Clancy, J. Appl. Phys., 121 (2017) 045106.

    Article  Google Scholar 

  11. C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer, G. Kresse, A. Janotti, C.G. Van de Walle, Rev. Mod. Phys., 86 (2014) 253–305.

    Article  Google Scholar 

  12. C.G. Van de Walle, J. Neugebauer, J. Appl. Phys., 95 (2004) 3851–3879.

    Article  Google Scholar 

  13. J.A. Del Alamo, Nature, 479 (2011) 317–323.

    Article  Google Scholar 

  14. J. Hu, M. Deal, J. Plummer, J. Appl. Phys., 78 (1995) 1595–1605.

    Article  CAS  Google Scholar 

  15. S. Koumetz, J. Marcon, K. Ketata, M. Ketata, C. Dubon-Chevallier, P. Launay, J. Benchimol, Appl. Phys. Lett., 67 (1995) 2161–2163.

    Article  CAS  Google Scholar 

  16. J. Marcon, S. Koumetz, K. Ketata, M. Ketata, J. Caputo, Eur. Phys, J. Appl. Phys., 8 (1999) 7–18.

    Article  CAS  Google Scholar 

  17. S.D. Koumetz, P. Martin, H. Murray, J. Appl. Phys., 116 (2014) 103701.

    Article  Google Scholar 

  18. W. Liu, M.A. Sk, S. Manzhos, I. Martin-Bragado, F. Benistant, S.A. Cheong, Acta Mater., 125 (2017) 455–464.

    Article  CAS  Google Scholar 

  19. R.B. Araujo, A. Banerjee, P. Panigrahi, L. Yang, M. Strømme, M. Sjödin, C.M. Araujo, R. Ahuja, J. Mater. Chem. A, (2017)

  20. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 77 (1996) 3865–3868.

    Article  CAS  Google Scholar 

  21. G. Kresse, J. Furthmüller, Phys. Rev. B, 54 (1996) 11169–11186.

    Article  CAS  Google Scholar 

  22. G. Kresse, D. Joubert, Phys. Rev. B, 59 (1999) 1758–1775.

    Article  CAS  Google Scholar 

  23. P.E. Blöchl, Phys. Rev. B, 50 (1994) 17953.

    Article  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B, 13 (1976) 5188–5192.

    Article  Google Scholar 

  25. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B, 49 (1994) 16223.

    Article  Google Scholar 

  26. S. Murphy, A. Chroneos, R. Grimes, C. Jiang, U. Schwingenschlögl, Phys. Rev. B, 84 (2011) 184108.

    Article  Google Scholar 

  27. S. Lee, A. Wright, N. Modine, C. Battaile, S. Foiles, J. Thomas, A. Van der Ven, Phys. Rev. B, 92 (2015) 045205.

    Article  Google Scholar 

  28. C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley, 2004

  29. R. Penrose, Math. Proc. Cambridge Philos. Soc., 51 (1955) 406–413.

    Article  Google Scholar 

  30. H. Tahini, A. Chroneos, S. Murphy, U. Schwingenschlögl, R. Grimes, J. Appl. Phys., 114 (2013) 063517.

    Article  Google Scholar 

  31. F. Legrain, S. Manzhos, AIP Advances, 6 (2016) 045116.

    Article  Google Scholar 

  32. F. Legrain, O.I. Malyi, S. Manzhos, MRS Proc., 1678 (2014) mrss14-1678-n1609-1606

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Manzhos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulish, V., Liu, W. & Manzhos, S. A Model for Estimating Chemical Potentials in Ternary Semiconductor Compounds: the Case of InGaAs. MRS Advances 2, 2909–2914 (2017). https://doi.org/10.1557/adv.2017.356

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.356

Navigation