Skip to main content
Log in

Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or a one-beam configuration based on a Lloyd’s Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam, we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser and etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.C. Lemme, C. Moormann, H. Lerch, M. Möller, B. Vratzov, and H. Kurz, Nanotechnology 15, S208 (2004).

    Article  CAS  Google Scholar 

  2. S.K. Selvaraja, P. Jaenen, W. Bogaerts, D. Van Thourhout, P. Dumon, and R. Baets, J. Light. Technol. 27, 4076 (2009).

    Article  CAS  Google Scholar 

  3. G.M. Burrow, M.C.R. Leibovici, and T.K. Gaylord, Appl. Opt. 51, 4028 (2012).

    Article  Google Scholar 

  4. H. Wolferen, L. Abelmann, and H. van Wolferen, Lithogr. Princ. Process. Mater. 133 (2011).

  5. I. Divliansky, T.S. Mayer, K.S. Holliday, and V.H. Crespi, Appl. Phys. Lett. 82, 1667 (2003).

    Article  CAS  Google Scholar 

  6. A. J. Turberfield, Nature 404, 53 (2000).

    Article  Google Scholar 

  7. C. Lu and R.H. Lipson, Laser Photonics Rev. 4, 568 (2010).

    Article  CAS  Google Scholar 

  8. Q. Xie, M.H. Hong, H.L. Tan, G.X. Chen, L.P. Shi, and T.C. Chong, J. Alloys Compd. 449, 261 (2008).

    Article  CAS  Google Scholar 

  9. R.F. Pease, Microelectron. Eng. 7879, 381 (2005).

    Article  Google Scholar 

  10. A. Labeyrie and J. Flamand, Opt. Commun. 1, 5 (1969).

    Article  Google Scholar 

  11. D. Rudolph and G. Schmahl, Optik (Stuttg). 30, 475 (1970).

    Google Scholar 

  12. V. Berger, O. Gauthier-Lafaye, and E. Costard, J. Appl. Phys. 82, 60 (1997).

    Article  CAS  Google Scholar 

  13. M. A. Haast, I.. Heskamp, L. Abelmann, J.. Lodder, and T.J.. Popma, J. Magn. Magn. Mater. 193, 511 (1999).

    Article  CAS  Google Scholar 

  14. W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C. V. Thompson, and M.H. Hong, Nano Lett. 8, 3799 (2008).

    Article  CAS  Google Scholar 

  15. B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, Nanotechnology 22, 375302 (2011).

    Article  Google Scholar 

  16. J.H. Moon, S. Yang, and J. Ford, Polym. Adv. Technol. 17, 83 (2006).

    Article  CAS  Google Scholar 

  17. F. Quiñónez, J.W. Menezes, L. Cescato, V.F. Rodriguez-Esquerre, H. Hernandez-Figueroa, and R.D. Mansano, Opt. Express 14, 4873 (2006).

    Article  Google Scholar 

  18. J. de Boor, N. Geyer, U. Gösele, and V. Schmidt, Opt. Lett. 34, 1783 (2009).

    Article  Google Scholar 

  19. M. Barikani, E. Simova, and M. Kavehrad, 34, 2172 (1995).

  20. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. Van Campenhout, P. Bienstman, D. Van Thourhout, and R. Baets, 12, 1583 (2004).

  21. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).

    Article  CAS  Google Scholar 

  22. M. Miyake, Y.-C. Chen, P. V. Braun, and P. Wiltzius, Adv. Mater. 21, 3012 (2009).

    Article  CAS  Google Scholar 

  23. P. Spinelli, M. a. Verschuuren, and a. Polman, Nat. Commun. 3, 692 (2012).

    Article  CAS  Google Scholar 

  24. O.S. Heavens, Opt. Acta Int. J. Opt. 33, 1336 (1986).

    Article  Google Scholar 

  25. O. Kapon, M. Muallem, A. Palatnik, H. Aviv, and Y.R. Tischler, Appl. Phys. Lett. 107, (2015).

  26. D. Virganavius, Limatonis, A. Jurkeviute, T. Tamulevius, and S. Tamulevius, Proc. SPIE - Int. Soc. Opt. Eng. 9170, 1 (2014).

    Google Scholar 

  27. R. Ji, W. Lee, R. Scholz, U. Gösele, and K. Nielsch, Adv. Mater. 18, 2593 (2006).

    Article  CAS  Google Scholar 

  28. T.G. Stange, R. Mathew, D.F. Evans, and W. a. Hendrickson, Langmuir 8, 920 (1992).

    Article  CAS  Google Scholar 

  29. D.B. Hall, P. Underhill, and J.M. Torkelson, Polym. Eng. Sci. 38, 2039 (1998).

    Article  CAS  Google Scholar 

  30. S. Berezin, B.S. Kalanoor, H. Taha, Y. Garini, and Y.R. Tischler, Nanophotonics 3, 117 (2014).

    Article  CAS  Google Scholar 

  31. H. Aviv, S. Harazi, D. Schiff, Y. Ramon, and Y.R. Tischler, Thin Solid Films 564, 86 (2014).

    Article  CAS  Google Scholar 

  32. G. Mailhot, M. Bolte, and A.C. France, 1228 (1993).

  33. J. Kelly, M. Gleeson, C. Close, F. O’Neill, J. Sheridan, S. Gallego, and C. Neipp, Opt. Express (2005).

  34. L. Xue, J. Zhang, and Y. Han, Prog. Polym. Sci. 37, 564 (2012).

    Article  CAS  Google Scholar 

  35. S. Bai, W. Zhou, Y. Lin, Y. Zhao, T. Chen, A. Hu, and W.W. Duley, J. Nanoparticle Res. 16, 2470 (2014).

    Article  Google Scholar 

  36. Z. Pang and X. Zhang, Opt. Commun. 285, 4583 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapon, O., Muallem, M., Palatnik, A. et al. Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating. MRS Advances 2, 927–932 (2017). https://doi.org/10.1557/adv.2017.121

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2017.121

Navigation