Skip to main content

Advertisement

Log in

A Model of Interfacial Permeability for Soft Seals in Marine-Organism, Suction-Based Adhesion

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Reversible, suction based adhesion employed by many marine organisms may provide unique, adaptable technologies for biologically inspired grasping devices that function in difficult submerged environments. Here a theoretical framework based on measurable structural, material, and topological properties is developed to better understand a critical aspect of suction based attachment strategies: the leakage rate. The utility of the approach is demonstrated on an experimental apparatus designed to mimic the flow conditions experienced by a suction-based attachment device. Furthermore, the sealing effectiveness of a remora fish on sharkskin is investigated as a biological example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Czernik, D.E., Internal Combustion Engine Gaskets, in Gaskets and Gasketed Joints, J.H. Bickford, Editor. 1997, Marcel Dekker, Inc.: New York, NY.

    Google Scholar 

  2. Fisher, E.W., Packing and Seals, in Marks’ Standard Handbook for Mechanical Engineers, E.A. Avallone and T.B. III, Editors. 1987, McGraw-Hill Inc.: New York, NY.

    Google Scholar 

  3. Wainwright, D.K., et al., Stick tight: suction adhesion on irregular surfaces in the northern clingfish. Biology Letters, 2013. 9(3).

  4. Ditsche, P., D.K. Wainwright, and A.P. Summers, Attachment to challenging substrates – fouling, roughness and limits of adhesion in the northern clingfish (Gobiesox maeandricus). The Journal of Experimental Biology, 2014. 217(14): p. 2548–2554.

    Article  Google Scholar 

  5. Byern, J.v. and I. Grunwald, Biological Adhesive Systems. 2010, New York: Springer Science.

    Book  Google Scholar 

  6. Smith, A.M., Cephalopod sucker design and the physical limits to negative pressure. Journal of Experimental Biology, 1996. 199(4): p. 949–958.

    CAS  Google Scholar 

  7. Fulcher, B.A. and P.J. Motta, Suction disk performance of echeneid fishes. Canadian Journal of Zoology-Revue Canadienne De Zoologie, 2006. 84(1): p. 42–50.

    Article  Google Scholar 

  8. Davenport, J. and V. Thorsteinsson, Sucker Action in the Lumpsucker Cyclopterus-Lumpus L. Sarsia, 1990. 75(1): p. 33–42.

    Article  Google Scholar 

  9. Gibson, R.N., Powers of adhesion in Liparis montagui (Donovan) and other shore fish. Journal of Experimental Marine Biology and Ecology, 1969. 3(2): p. 179–190.

    Article  Google Scholar 

  10. De Meyer, J. and T. Geerinckx, Using the Whole Body as a Sucker: Combining Respiration and Feeding with an Attached Lifestyle in Hill Stream Loaches (Balitoridae, Cypriniformes). Journal of Morphology, 2014. 275(9): p. 1066–1079.

    Article  Google Scholar 

  11. Persson, B.N.J., et al., On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. Journal of Physics-Condensed Matter, 2005. 17(1): p. R1–R62.

    Article  CAS  Google Scholar 

  12. Persson, B.N.J. and C. Yang, Theory of the leak-rate of seals. Journal of Physics-Condensed Matter, 2008. 20(31).

    Google Scholar 

  13. Strasburg, D.W., Some Aspects of the Feeding Behavior of Remora remora. Pacific Science, 1962. 16(2): p. 202–206.

    Google Scholar 

  14. Ritter, E.K., Analysis of sharksucker, Echeneis naucrates, induced behavior patterns in the blacktip shark, Carcharhinus limbatus. Environmental Biology of Fishes, 2002. 65(1): p. 111–115.

    Article  Google Scholar 

  15. Ritter, E.K. and J.M. Brunnschweiler, Do Sharksuckers, Echeneis naucrates, Induce Jump Behaviour in Blacktip Sharks, Carcharhinus limbatus? Marine and Freshwater Behaviour and Physiology, 2003. 36(2): p. 111–113.

    Article  Google Scholar 

  16. Williams Jr, E.H., et al., Echeneid–sirenian associations, with information on sharksucker diet. Journal of Fish Biology, 2003. 63(5): p. 1176–1183.

    Article  Google Scholar 

  17. Sazima, I. and A. Grossman, Turtle riders: remoras on marine turtles in Southwest Atlantic. Neotropical Ichthyology, 2006. 4(1): p. 123–126.

    Article  Google Scholar 

  18. Weihs, D., F.E. Fish, and A.J. Nicastro, Mechanics of Remora Removal by Dolphin Spinning. Marine Mammal Science, 2007. 23(3): p. 707–714.

    Article  Google Scholar 

  19. Silva-Jr, J.M. and I. Sazima, Whalesuckers and a spinner dolphin bonded for weeks: does host fidelity pay off? Biota Neotropica, 2003. 3(2): p. 1–5.

    Article  Google Scholar 

  20. Cressey, R.F. and E.A. Lachner, The parasitic copepod diet and life history of diskfishes (Echeneidae). Copeia, 1970. 1970(2): p. 310–318.

    Article  Google Scholar 

  21. Culler, M., K.A. Ledford, and J.H. Nadler. The role of topology and tissue mechanics in remora attachment. in MRS Fall Meeting 2013. 2013. Boston, MA.

  22. Nadler, J.H., et al. Structures and Function of Remora Adhesion. in MRS Spring Meeting 2013. 2013. San Fransisco, CA.

  23. Kier, W.M. and A.M. Smith, The structure and adhesive mechanism of octopus suckers. Integrative and Comparative Biology, 2002. 42(6): p. 1146–1153.

    Article  Google Scholar 

  24. Persson, B.N.J., et al., Contact area between a viscoelastic solid and a hard, randomly rough, substrate. The Journal of Chemical Physics, 2004. 120(18): p. 8779–8793.

    Article  CAS  Google Scholar 

  25. Chen, P.Y., J. McKittrick, and M.A. Meyers, Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 2012. 57(8): p. 1492–1704.

    Article  CAS  Google Scholar 

  26. Beckert, M., B.E. Flammang, and J.H. Nadler, Theoretical and computational fluid dynamics of an attached remora (Echeneis naucrates). 2014.

  27. Beckert, M., B.E. Flammang, and J.H. Nadler, Remora fish suction pad attachment is enhanced by spinule friction. Journal of Experimental Biology, 2015. 218(22): p. 3551–3558.

    Article  Google Scholar 

  28. Vorburger, T.V., Methods for Characterizing Surface Topology. Tutorials in Optics: Osa Annual Meeting, Rochester NY, ed. D.T. Moore. 1992, Washington DC: Optical Society of America.

    Google Scholar 

  29. Fung, Y.C., Biomechanics Mechanical Properties of Living Tissues. 1993: Springer-Verlag New York Inc.

  30. Lakes, R.S., Viscoelastic Solids. 1999, Boca Raton, FL: CRC Press.

    Google Scholar 

  31. Krouskop, T.A., et al., Elastic moduli of breast and prostate tissues under compression. Ultrasonic Imaging, 1998. 20(4): p. 260–274.

    Article  CAS  Google Scholar 

  32. Guarnieri, F.A. and A. Cardona, 3D Solid Incompressible Viscoelastic Finite Element in Large Strains for the Cornea. Mechanica Computacional, 1997. 18: p. 799–808.

    Google Scholar 

  33. Liu, Z. and L. Bilston, On the viscoelastic character of liver tissue: experiments and modelling of the linear behaviour. Biorheology, 2000. 37(3): p. 191–201.

    CAS  Google Scholar 

  34. Kiss, M.Z., T. Varghese, and T.J. Hall, Viscoelastic characterization of in vitro canine tissue. Physics in Medicine and Biology, 2004. 49(18): p. 4207–4218.

    Article  Google Scholar 

  35. Haghpanahi, M. and H.A. Naeeni. Investigation of Viscoelastic Properties of Human Liver Tissue Using MR Elastography and FE Modeling. in Proceedings of the 17th Iranian Conference of Biomedical Engineering. 2010.

  36. Chatelin, S., et al., In vivo liver tissue mechanical properties by transient elastography: Comparison with dynamic mechanical analysis. Biorheology, 2011. 48(2): p. 75–88.

    Article  Google Scholar 

  37. Cowin, S.C. and S.B. Doty, Tissue Mechanics. 2007: Springer Science.

  38. Biot, M.A., General theory of three-dimensional consolidation. Journal of Applied Physics, 1941. 12(2): p. 155–164.

    Article  Google Scholar 

  39. Mei, C.C. and B. Vernescu, Homogenization Methods for Multiscale Mechanics. 2010, 27 Warren St, Suite 401–402, Hackensack, NJ 07601: World Scientific Publishing Co.Pte.Ltd.

  40. Dullen, F.A.L., Porous Media Fluid Transport and Pore Structure. 2nd ed. 1992, Sandiago, CA: Academic Press Inc.

    Google Scholar 

  41. Hallquist, J.O., G.L. Goudreau, and D.J. Benson, Sliding interfaces with contact-impact in large-scale Lagrangian computations. Computer Methods in Applied Mechanics and Engineering, 1985. 51(1–3): p. 107–137.

    Article  Google Scholar 

  42. Belytschko, T., W.K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures. 2000: Wiley.

  43. Hyun, S., et al., Finite-element analysis of contact between elastic self-affine surfaces. Physical Review E, 2004. 70(2).

  44. Anderson, E.J., W.R. McGillis, and M.A. Grosenbaugh, The boundary layer of swimming fish. Journal of Experimental Biology, 2001. 204(1): p. 81–102.

    CAS  Google Scholar 

  45. ASTM, Standard Practice for Stress Relaxation Testing of Raw Rubber, Unvulcanized Rubber Compounds, and Thermoplastic Elastomers. 2012, ASTM International: West Conshohocken, PA.

    Google Scholar 

  46. Mix, A.W. and A.J. Giacomin, Standardized Polymer Durometry. Journal of Testing and Evaluation, 2011. 39(4): p. 696–705.

    CAS  Google Scholar 

  47. Sewell, R.B.S., The adhesive apparatus of the “ sucking-fish ”. Nature, 1925. 115: p. 48–49.

    Article  Google Scholar 

  48. Shephard, K.L., Functions for Fish Mucus. Reviews in Fish Biology and Fisheries, 1994. 4(4): p. 401–429.

    Article  Google Scholar 

  49. Roberts, S.D. and M.D. Powell, The viscosity and glycoprotein biochemistry of salmonid mucus varies with species, salinity and the presence of amoebic gill disease (vol 175, pg 1, 2004). Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology, 2005. 175(3): p. 219–219.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckert, M., Flammang, B.E. & Nadler, J.H. A Model of Interfacial Permeability for Soft Seals in Marine-Organism, Suction-Based Adhesion. MRS Advances 1, 2531–2543 (2016). https://doi.org/10.1557/adv.2016.445

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2016.445

Navigation