Skip to main content
Log in

Radiation-induced decomposition of U(VI) alteration phases of UO2

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

U6+-phases are common alteration products of spent nuclear fuel under oxidizing conditions, and they may potentially incorporate actinides, such as long-lived 239Pu and 237Np, delaying their transport to the biosphere. In order to evaluate the ballistic effects of a-decay events on the stability of the U6+-phases, we report, for the first time, the results of ion beam irradiations (1.0 MeV Kr2+) for six different structures of U6+-phases: uranophane, kasolite, boltwoodite, saleeite, carnotite, and liebigite. The target uranyl-minerals were characterized by powder X-ray diffraction and identification confirmed by SAED (selected area electron diffraction) in TEM (transmission electron microscopy). The TEM observation revealed no initial contamination of uraninite in these U6+ phases. All of the samples were irradiated with in situ TEM observation using 1.0 MeV Kr2+ in the IVEM (intermediate-voltage electron microscope) at the IVEM-Tandem Facility of Argonne National Laboratory. The ion flux was 6.3 × 1011 ions/cm2/sec. The specimen temperatures during irradiation were 298 and 673 K, respectively. The Kr2+-irradiation decomposed the U6+-phases to nanocrystals of UO2 at doses as low as 0.006 dpa. The cumulative doses for the pure U6+-phases, e.g., uranophane, at 0.1 and 1 million years (m.y.) are calculated to be 0.009 and 0.09 dpa using SRIM2003. However, with the incorporation of 1 wt.239Pu, the calculated doses reach 0.27 and ~1.00 dpa in ten thousand and one hundred thousand years, respectively.

Under oxidizing conditions, multiple cycles of radiation-induced decomposition to UO2 followed by alteration to U6+-phases should be further investigated to determine the fate of trace elements that may have been incorporated in the U6+-phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. J. Finch, R. C. Ewing, J. Nucl. Mater. 190, 133 (1992).

    Article  CAS  Google Scholar 

  2. D. J. Wronkiewicz, et al., J. Nucl. Mater. 190, 107 (1992).

    Article  CAS  Google Scholar 

  3. R. J. Finch, T. Murakami, Rev. Miner. 38, 91 (1999).

    CAS  Google Scholar 

  4. P. C. Burns, R. C. Ewing, M. L. Miller, J. Nucl. Mater. 245, 1 (1997).

    Article  CAS  Google Scholar 

  5. E. Curti, Coprecipitation of radionuclides: basic concepts, literature review and first applications, Paul Scherrer Institut, Bericht Nr. 97-10. p107 (1997).

  6. Y. Chen, Computers & Geoscience, 29, 385 (2003).

    Article  CAS  Google Scholar 

  7. D. Wronkiewiecz, E. Buck, Rev. Miner. 38, 475 (1999).

    Google Scholar 

  8. F. Chen, R. C. Ewing, S. B. Clark, Am. Mineral. 84, 650 (1999).

    Article  CAS  Google Scholar 

  9. W. M. Murphy, R. B. Codell, Mater. Res. Soc. Proc. 556, 551 (1999).

    Article  CAS  Google Scholar 

  10. E. Buck, et al., Mater. Res. Soc. Proc. 506, 87 (1998).

    Article  CAS  Google Scholar 

  11. P. C. Burns, K. M. Deely, S. Skanthakumar, Radiochim. Acta 92, 151 (2004).

    Article  CAS  Google Scholar 

  12. M. Douglas, et al., Radiochim. Acta 93, 265 (2005).

    Article  CAS  Google Scholar 

  13. M. Douglas, et al., Environ. Sci. Technol. 39, 4117 (2005).

    Article  CAS  Google Scholar 

  14. W. J. Weber, et al., J. Mater. Res. 13, 1434 (1998).

    Article  CAS  Google Scholar 

  15. H. Matzke, Rad. Eff. Def. Solid. 64, 3 (1982).

    Article  CAS  Google Scholar 

  16. H. Matzke, L. M. Wang, L.M. J. Nucl. Mater. 231, 155 (1996).

    Article  CAS  Google Scholar 

  17. R. C. Ewing, W. J. Weber, J. Lian, J. Appl. Phys. 95, 5949 (2004).

    Article  CAS  Google Scholar 

  18. D. W. Shoesmith, J. Nucl. Mater. 282, 1 (2000).

    Article  CAS  Google Scholar 

  19. S. Utsunomiya, et al., Am. Min. 88, 159 (2003).

    Article  CAS  Google Scholar 

  20. J. F. Ziegler, J. P. Biersack, U. Littmark, The stopping and range of ions in solids (Pergamon, New York, 1985).

    Google Scholar 

  21. L. M. Wang, R. C. Ewing, Mater. Res. Soc. Bull. 17, 38 (1992).

    Article  Google Scholar 

  22. W. J. Weber, R. C. Ewing, Science 289, 2051 (2000).

    Article  CAS  Google Scholar 

  23. D. J. Wronkiewicz, J. K. Bates, S. F. Wolf, E. C. Buck, J. Nucl. Mater. 238, 78 (1996).

    Article  CAS  Google Scholar 

  24. P. C. Burns, Rev. Miner. 38, 23 (1999).

    CAS  Google Scholar 

  25. P. C. Burns, M. L. Miller, R. C. Ewing, Can. Mineral. 34, 845 (1996).

    CAS  Google Scholar 

  26. L. M. Wang, et al., Mater. Sci. Eng. A 286, 72 (2000).

    Article  Google Scholar 

  27. R. G. J. Ball, et al., J. Nucl. Mater. 201, 238 (1993).

    Article  CAS  Google Scholar 

  28. S. X. Wang, L. M. Wang, R. C. Ewing, Phys. Rev. B 63, 024105, (2000).

    Article  Google Scholar 

  29. K. A. Jensen, R. C. Swing, GSA Bull. 113, 32 (2001).

    Article  CAS  Google Scholar 

  30. J. Janeczek, R. C. Ewing, J. Nucl. Mater. 190, 157–173 (1992).

    Article  CAS  Google Scholar 

  31. J. Janeczek, Rev. Miner. 38, 321 (1999).

    CAS  Google Scholar 

  32. M. Fayek, Am. Miner. 88, 1583 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, S., Ewing, R.C. Radiation-induced decomposition of U(VI) alteration phases of UO2. MRS Online Proceedings Library 932, 731 (2006). https://doi.org/10.1557/PROC-932-73.1

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-932-73.1

Navigation