Skip to main content
Log in

Experimental Determination of the Deliquescence Relative Humidity and Conductivity of Multicomponent Salt Mixtures

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The conductivity of hygroscopic salt deposits containing Na+, K+, NO3 and Cl ions was measured in air as a function of relative humidity at constant temperatures. The deliquescence relative humidity (DRH) of multicomponent salts containing Na+, K+, NO3 and Cl was also determined experimentally. The results of the conductivity experiments show that the conductivity of initially dry salt deposits start to increase after reaching a relative humidity value that is 15 to 20% lower than the DRH of the salt. When the DRH is reached, the conductivity increases dramatically as the salt dissolves and transforms into a saturated aqueous phase. The increase in conductivity at humidities below the DRH is attributed to the adsorption of water on the surface of the salt particles. Because of the increase in conductivity, the initiation of aqueous corrosion of metals in contact with hygroscopic salts may occur at a relative humidity much lower than the DRH of the salt. Thus, the onset of aqueous corrosion of metallic nuclear waste package and the drip shield may be earlier, the duration may be longer, and the temperature at which it occurs may be higher than assumed based on the DRH of the salt. The results of the DRH experiments show that the DRH of a salt mixture is usually significantly lower than that of any of its component pure salt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Civilian Radioactive Waste Management System Management and Operating Contractor, “Environment on the Surfaces of the Drip Shield and Waste Package Outer Barrier,” ANL–EBS–MD–000001, Revision 00 ICN 01, (Las Vegas, NV, Office of Civilian Radioactive Waste Management System, Management and Operating Contractor, 2000).

    Google Scholar 

  2. R.T. Pabalan, L. Yang and L. Browning, “Deliquescence Behavior of Multicomponent Salts: Effects on the Drip Shield and Waste Package Chemical Environment at the Proposed Nuclear Waste Repository at Yucca Mountain, Nevada”, Scientific Basis for Nuclear Waste Management XXV (MRS meeting, Boston, MA, 2001) (this volume).

    Google Scholar 

  3. C.S. Brossia, L. Browning, D.S. Dunn. O.C. Moghissi, O. Pensado and L. Yang. “Effect of Environment on the Corrosion of Waste Package and Drip Shield Materials,” CNWRA 2001-003 (San Antonio, TX: Center for Nuclear Waste Regulatory Analyses, 2001).

    Google Scholar 

  4. Civilian Radioactive Waste Management System Management and Operating Contractor, “Waste Package Degradation Process Model Report,” TDR-WIS-MD-000002 Revision 00 ICN 02 (Las Vegas, NV, office of Civilian Radioactive Waste Management System, Management and Operating Contractor, 2000).

    Google Scholar 

  5. ASTM Designation: E104–85 (Reapproved 1996), “Standard practice for maintaining constant relative humidity by means of aqueous solutions standard” (1996).

    Google Scholar 

  6. L. Greenspan, J. of Research of the National Bureau of Standards. 81A, 89–96 (1977)

    Article  Google Scholar 

  7. R.C. Weast, ed. 1981. CRC Handbook of Chemistry and Physics. 62nd Edition. (CRC Press, 1974), p. E–46.

    Google Scholar 

  8. Z. Ge, A.S. Wexler, and M.V. Johnston, J. Phys. Chem., 102, 173–180 (1998).

    Article  CAS  Google Scholar 

  9. M.D. Cohen, R.C. Flagan, J.H. Seinfeld, J. Phys. Chem., 91, 4575 (1987).

    Article  CAS  Google Scholar 

  10. R. Vogt and B.J. Finlayson-Pitts, J. Phys. Chem., 98, 3747 (1994).

    Article  CAS  Google Scholar 

  11. C. Leygraf and T. Graedel, “Atmospheric Corrosion” (Wiley Interscience, New York, 2000), Chapter 2.

    Google Scholar 

  12. Civilian Radioactive Waste Management System Management and Operating Contractor, “Total System Performance Assessment for the Site Recommendation”, TDR-WIS-PA-000001, Revision 00 ICN 01 (Las Vegas, NV, office of Civilian Radioactive Waste Management System, Management and Operating Contractor, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Pabalan, R.T. & Browning, L. Experimental Determination of the Deliquescence Relative Humidity and Conductivity of Multicomponent Salt Mixtures. MRS Online Proceedings Library 713, 114 (2001). https://doi.org/10.1557/PROC-713-JJ11.4

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-713-JJ11.4

Navigation