Skip to main content
Log in

Kinetic Exchange Vs. Room Temperature Ferromagnetism in Diluted Magnetic Semiconductors

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Guided by the internal-reference rule and the known band o sets in - and - diluted magnetic semiconductors, we discuss the feasibility of obtaining p-type conductivity, required for the carrier-induced ferromagnetism, as well as the cases for which the doping by shallow impurities may lead to the ferromagnetism driven by the double exchange. e consider the dependence of kinetic exchange on the p-d hybridization, on the electronic con gurations of the magnetic ions, and on the energies of the charge transfer betw een the valence band of host materials and the magnetic ions. n the case of n-based - compounds, the doping by acceptors is necessary for the hole-induced ferromagnetism. he latter is, how ever, possible without any doping for some of Mn-, Fe- or Co-based - magnetic semiconductors. n nitrides with Fe or Co carrier-induced ferromagnetism with TC > 300 is expected in the presence of acceptor doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Ohno, et al., H. Munekata, T. Penney, S. von. Molnar and L.L. Chang, Phys. Rev.Lett. 68, 2664 (1992).

    Article  CAS  Google Scholar 

  2. H. Ohno, et al. Appl. Phys. Lett. 69, 363 (1996).

    Article  CAS  Google Scholar 

  3. A. Van. Esch, L. Van. Bockstal et al., Phys. Rev. B 56, 13103 (1997).

    Article  Google Scholar 

  4. F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Phys. Rev.B 57, R2037 (1998).

    Article  CAS  Google Scholar 

  5. A. Haury et al., Phys. Rev. Lett. 79, 511 (1997).

    Article  CAS  Google Scholar 

  6. D. Ferrand et al., Phys. Rev. B 63, 085201 (2001).

    Article  CAS  Google Scholar 

  7. H. Ohno, J. Magn. Magn. Mater. 200, 110 (1999).

    Article  CAS  Google Scholar 

  8. T. Dietl, Physica E 10, 120 (2001).

    Article  CAS  Google Scholar 

  9. Y. Ohno et al., Nature 402 790 (1999).

    Article  CAS  Google Scholar 

  10. H. Ohno et al., Nature 408, 944(2000).

    Article  CAS  Google Scholar 

  11. M. Tanaka and Y. Higo, Phys. Rev. Lett. 87, 026602 (2001).

    Article  CAS  Google Scholar 

  12. T. Dietl, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand, Science 287, 1019 (2000)

    Article  CAS  Google Scholar 

  13. T. Dietl, H. Ohno and F. Matsukura, Phys. Rev. B 63, 195205 (2001).

    Article  CAS  Google Scholar 

  14. T. Dietle-print: http://arXiv.org/abs/cond-mat/0201282 and references therein

  15. Y.D. Park, et al., Appl. Phys. Lett 78, 2739 (2001).

    Article  CAS  Google Scholar 

  16. T. Dietl, A. Haury, and Y. Merle d’Aubigné, Phys. Rev. B 55, R3347 (1997).

    Article  CAS  Google Scholar 

  17. T. Andrearczyk et al., Proceedings25th ICPS, Osaka, Japan, 2000, eds. N. Miura and T. Ando (Spriger, Berlin, 2001) p. 235.

    Google Scholar 

  18. P. Kacman, Semicon. Sci. Technol. 16, R25 (2001).

    Article  CAS  Google Scholar 

  19. J. Kossut and W. Dobrowolski, in Handbook of Magnetic Materials, Vol.7, ed. K.H.J. Buschow (Elsevier, Amsterdam 1993), p. 231; T. Dietl, in Handbook on Semiconductors, Vol. 3B, ed. T.S. Moss (Elsevier, Amsterdam 1994), p. 1251.

    CAS  Google Scholar 

  20. A.K. Bhattacharjee and C. Benoitàla Guillaume, Solid State Commun. 113, 17 (2000).

    Article  Google Scholar 

  21. J. Szczytko, W. Bardyszewski and A. Twardowski, Phys. R ev. B64, 075306 (2001).

    Google Scholar 

  22. S. Sanvito, P. Ordejon and N.A. Hill, Phys. R ev.B 63, 165206 (2001).

    Article  CAS  Google Scholar 

  23. J. Okabayashi et al., Phys. Rev. B 58, R4211 (1998).

    Article  CAS  Google Scholar 

  24. M. J. Caldas, A. Fuzzio and A. Zunger Appl. Phys. Lett 45, 671 (1984).

    Article  CAS  Google Scholar 

  25. J.M. Langer, C. Delerue, M. Lannoo and H. Heinrich, Phys. Rev.B 38, 7723 (1988).

    Article  CAS  Google Scholar 

  26. P. Vogl and J.M. Baranowski, Acta Phys. Polon. A 67, 133 (1985).

    Google Scholar 

  27. A. Zunger, in: Solid State Phys., vol.39, eds. H. Ehrenreich and D. Turnbull (Academic Press, New York, 1986), p. 275.

    Article  CAS  Google Scholar 

  28. V.I. Sokolov, Fiz. Tverd. Tela 29, 1848 (1987).

    CAS  Google Scholar 

  29. D. Heiman et al., Mater. Res. Soc.Symp. Proc., Vol.161, (1990), p. 479.

    Article  CAS  Google Scholar 

  30. S.M. Sze Physics of Semiconductor Devices (John Wiley and Sons, NY 1981), p. 849.

    Google Scholar 

  31. S-H. Wei and A. Zunger, Appl. Phys. Lett. 72, 2011 (1998).

    Article  CAS  Google Scholar 

  32. I. Vurgaftman, J.R. Meyer and L.R Ram-Mohan, J. Appl. Phys. 89, 5815(2001).

    Article  CAS  Google Scholar 

  33. J. Kreissl, W. Ulrici, M. El-Metoui, A.-M. Vasson, A. Vasson and A. Gavaix, Phys. Rev.B 54, 10508 (1996).

    Article  CAS  Google Scholar 

  34. K. Ueda, H. Tabata and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

    Article  CAS  Google Scholar 

  35. H. Saeki, H. Tabata and T. Kawai, Solid State Commun. 120, 439 (2001).

    Article  CAS  Google Scholar 

  36. J. Blinowski, P. Kacman and J.A. Majewski, J. Cryst. Growth 159, 972 (1996).

    Article  CAS  Google Scholar 

  37. C. Benoitàla Guillaume, D. Scalbert and T. Dietl, Phys. Rev. B46, 9853 (1992).

    Article  Google Scholar 

  38. T. Dietl, F. Matsukura and H. Ohno, e-print: http://arXiv.org/abs/cond-mat/0109245.

  39. P Glód, T. Dietl, T. Fromherz, G. Bauer and I. Miotkowski Phys. Rev.B 49, 7797 (1994).

    Article  Google Scholar 

  40. H. Ohldag et al., Appl. Phys. Lett. 76, 2928 (2000).

    Article  CAS  Google Scholar 

  41. J.H. Park, S.K. Kwon and B.I. Min, Physica B 281&282, 703 (2000).

    Article  CAS  Google Scholar 

  42. H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

    Article  CAS  Google Scholar 

  43. J. Blinowski and P. Kacman, Phys. Rev.B 46, 12298 (1992).

    Article  CAS  Google Scholar 

  44. T. Nambu, unpublished.

  45. J. Blinowski and P. Kacman, ActaPhys. Polon. A 100, 343 (2001).

    Article  CAS  Google Scholar 

  46. H. Akinaga et al., Appl. Phys. Lett. 77, 4377 (2000).

    Article  CAS  Google Scholar 

  47. M Zajac et al., Appl. Phys. Lett. 79, 2432 (2001).

    Article  CAS  Google Scholar 

  48. A Wolos’, M. Palczewska, M Kaminska and A. Twardowski, unpublished.

  49. N. Theodoropolpu et al., Appl. Phys. Lett. 78, 3475 (2001).

    Article  CAS  Google Scholar 

  50. M. L. Reed. Appl. Phys. Lett. 79, 3473 (2001).

    Article  CAS  Google Scholar 

  51. S. Sonoda, S. Shimizu, T. Sasaki, Y. Yamamoto and H. Hori, e-print: http://arXiv.org/abs/cond-mat/0108159.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blinowski, J., Kacman, P. & Dietl, T. Kinetic Exchange Vs. Room Temperature Ferromagnetism in Diluted Magnetic Semiconductors. MRS Online Proceedings Library 690, F6.9 (2001). https://doi.org/10.1557/PROC-690-F6.9

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-690-F6.9

Navigation