Skip to main content
Log in

Amorphous Silicon Alloy Materials and Solar Cells Near the Threshold of Microcrystallinity

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

One of the most effective techniques used to obtain high quality amorphous silicon alloys is the use of hydrogen dilution during film growth. The resultant material exhibits a more ordered microstructure and gives rise to high efficiency solar cells. As the hydrogen dilution increases, however, a threshold is reached, beyond which microcrystallites begin to form rapidly. In this paper, we review some of the interesting features associated with the thin film materials obtained from various hydrogen dilutions. They include the observation of linear-like objects in the TEM micrograph, a shift of the principal Si TO band in the Raman spectrum, a sharp, low temperature peak in the H2 evolution spectrum, a shift of the wagging mode in the IR spectrum, and a narrowing of the Si (111) peak in the X-ray diffraction pattern. These spectroscopic tools have allowed us to optimize deposition conditions to near the threshold of microcrystallinity and obtain desired high quality materials. Incorporation of the improved materials into device configuration has significantly enhanced the solar cell performance. Using a spectral-splitting, triple-junction configuration, the spectral response of a typical high efficiency device spans from below 350 nm to beyond 950 nm with a peak quantum efficiency exceeding 90%; the triple stack generates a photocurrent of 27 mA/cm2. This paper describes the effect of the improved materials on various solar cell structures, including a 13% active-area, stable triple-junction device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Rannels, Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria (1998), p. LXXXVII.

    Google Scholar 

  2. S. Guha, J. Yang, A. Banerjee, T. Glatfelter, G.J. Vendura,, Jr, A. Garcia and M. Kruer, Proc. of 2nd World Conf. and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, Austria (1998) p. 3609.

    Google Scholar 

  3. B. von Roedern, K. Zweibel, E. Schiff, J.D. Cohen, S. Wagner, S.S. Hegedus and T. Peterson, AIP Conference Proceedings 394, 3 (1997).

    Article  Google Scholar 

  4. J. Yang, X. Xu and S. Guha, Mater. Res. Soc. Symp. Proc. 336, 687 (1994). 249

    Google Scholar 

  5. S. Guha, K.L. Narasimhan and S.M. Pietruszko, J. Appl. Phys. 52, 859 (1981).

    Article  CAS  Google Scholar 

  6. D.V. Tsu, B.S. Chao, S.R. Ovshinsky, S. Guha and J. Yang, Appl. Phys. Lett. 71, 1317 (1997).

    Article  CAS  Google Scholar 

  7. X. Xu, J. Yang and S. Guha, J. Non-Crys. Solids 198–200, 96 (1996).

    Google Scholar 

  8. S.J. Jones, Y. Chen, D.L. Williamson, X. Xu, J. Yang and S. Guha, Mater. Res. Soc. Symp. Proc. 297, 815 (1993).

    Article  CAS  Google Scholar 

  9. D.L. Williamson, Mater. Res. Soc. Symp. Proc. 377, 251 (1995).

    Article  CAS  Google Scholar 

  10. S. Sugiyama, J. Yang and S. Guha, Appl. Phys. Lett. 70, 378 (1997).

    Article  CAS  Google Scholar 

  11. S. Guha, J. Yang, D.L. Williamson, Y. Lubianiker, J.D. Cohen and A.H. Mahan, Appl. Phys. Lett. (1999) (to be published).

    Google Scholar 

  12. D.L. Williamson, this symposium.

  13. A.H. Mahan, J. Yang and S. Guha, this symposium.

  14. T. Kamei, P. Stradius and A. Matsuda, Appl. Phys. Lett. 74, 1707 (1999).

    Article  CAS  Google Scholar 

  15. J.H. Koh, Y. Lee, H. Fujiwara, C.R. Wronski and R.W. Collins, Appl. Phys. Lett. 73, 1526 (1998).

    Article  CAS  Google Scholar 

  16. D.L. Staebler and C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

    Article  CAS  Google Scholar 

  17. J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman, X. Xu and S. Guha, 1st World Conf. on Photovoltaic Energy Conversion, Waikoloa, Hawaii, Dec. 5-9, 1994, p. 380.

    Google Scholar 

  18. L. Yang and L. Chen, Mater. Res. Soc. Symp. Proc. 336, 669 (1994).

    Article  CAS  Google Scholar 

  19. L. Jiang, Q. Wang, E.A. Schiff, S. Guha, J. Yang and X. Deng, Appl. Phys. Lett. 69, 3063 (1996).

    Article  CAS  Google Scholar 

  20. M. Shima, A. Terakawa, M. Isomura, M. Tanaka, S. Kiyama and S. Tsuda, Appl. Phys. Lett. 71, 84 (1997).

    Article  CAS  Google Scholar 

  21. S. Guha, J. Yang, A. Pawlikiewicz, T. Glatfelter, R. Ross and S.R. Ovshinsky, Appl. Phys. Lett. 54, 2330 (1989).

    Article  CAS  Google Scholar 

  22. J. Yang, A. Banerjee and S. Guha, Appl. Phys. Lett. 70, 2975 (1997).

    Article  CAS  Google Scholar 

  23. J. Yang, S. Sugiyama and S. Guha, Mater. Res. Soc. Symp. Proc. 507, 157 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Guha, S. Amorphous Silicon Alloy Materials and Solar Cells Near the Threshold of Microcrystallinity. MRS Online Proceedings Library 557, 239–250 (1999). https://doi.org/10.1557/PROC-557-239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-557-239

Navigation