Skip to main content
Log in

Testing the Grambow Glass Dissolution Model by Comparing it With Monte Carlo Simulation Results

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

We have developed a Monte Carlo (simulation) model to describe glass dissolution. This model uses similar parameters to those used in the Grambow model, which has been the main glass dissolution model during the last decade. While the Grambow model is macroscopic, ours is microscopic. This assures that the value of our parameters is time independent and allows changes in the gel structure (not just concentrations) to be described.

We relate our parameters to those of the Grambow model and test whether the basic assumptions of the Grambow model are consistent with our simulation results. In these simulations, as the solution evolves towards silica saturation, the silica concentration in solution can become higher than the (final) silica saturation concentration. A possible explanation for this behavior, which is observed experimentally as well, is that the silica saturation concentration is not constant as a function of time. Initially, the silica saturation concentration is the glass saturation concentration. The glass saturation concentration is higher than the final silica saturation concentration, which corresponds to saturation of the gel. In the Grambow model, the initial dissolution rate (at the gel/water interface) and the diffusion coefficient of silica in the gel are not constant either. The existence of a final dissolution rate depends on the silica content of the glass and on the protection provided by the gel layer. In the simulations, a protective gel is mainly formed by the adsorption (precipitation) of dissolved silica particles from the solution in contact with the gel. This makes us expect that (1) the gel would be non protective for dynamic tests (with a low silica content in solution) and (2) the gel would be very protective in static tests with high surface to volume ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aagaard and H. Helgeson., Am. J. of Science 282, p. 237 (1982).

    Article  CAS  Google Scholar 

  2. B. Grambow, Nuclear waste glass dissolution. mechanism, model and application, (Report to the JSS-project 87-02, phase IV, 1987).

    Google Scholar 

  3. T. Advocat, J. L. Couchan, J. L. Crovisier, C. Guy, V. Daux, C. Jégou, S. Gin and E. Vernaz in Scientific Basis for Nuclear Waste Management XXI, edited by I. Mc Kinley, C. McCombie (Mat. Res. Soc. Symp. Proc. 506, 1998) pp. 63–70.

    CAS  Google Scholar 

  4. W. Kuhn and L. Bunnell, Results of testing the Grambow rate law for use in HWVP glass durability correlations, (Report PNNL-1 1070 UC-810, Richland, Washington, USA, 1996).

    Book  Google Scholar 

  5. C. Jdgou, S. Gin, E. Vernaz and F. Larché in Proc. of XVIII Int. Congr. on Glass, edited by. M. Choudhary., N. Huff and C. Drummond (Am. Ceram. Soc., San Francisco, USA, 1998).

  6. S. Gin, C. Jégou, E. Vernaz, and F. Larché in Proc. of XVIII Int. Congr. on Glass, edited by. M. Choudhary, N. Huff and C. Drummond (Am. Ceram. Soc., San Francisco, USA, 1998).

  7. A. Lasaga in Kinetics of geochemical processes, edited by A. Lasaga and R. Kirkpatrick (Rev. Mineralogy 8, 1981), p. 1.

    CAS  Google Scholar 

  8. T. Böhm and J. Chudek, Fundamentals of Glass Science and Technology (Glafo, Växjö, Sweden, 1997), p. 476.

    Google Scholar 

  9. M. Aertsens and P. Van Iseghem in Scientific Basis for Nuclear Waste Management XX, edited by W. Murphy and D. Knecht (Mat. Res. Soc. Symp. Proc. 412, 1996) pp. 271–277.

    CAS  Google Scholar 

  10. M. Aertsens in Glass, scientifc research for high performance containment (CEA/Vairh6, Summer Session Proc., 1998), p. 343.

    Google Scholar 

  11. M. Aertsens in Proc. of XVIII Int. Congr. on Glass, edited by. M. Choudhary, N. Huff, and C. Drummond (Am. Ceram. Soc., San Francisco, USA, 1998).

  12. P. Dove and C. Crerar, Geochim. Cosmochim. Acta 54, p. 955 (1990).

    Article  CAS  Google Scholar 

  13. E. Vernaz and J. Dussossoy, Applied Geochem., Suppl. Issue no 1, p. 13 (1992).

    Article  CAS  Google Scholar 

  14. C. Jantzen, in Corrosion of Glass, Ceramics and Ceramic Conductors-Principles, edited by D. Clark and B. Zoitos. (Noyes Publications, Park Ridge, New Jersey, 1992), p. 153.

  15. F. Delage, F. Larche and E. Vernaz in Scientific Basis for Nuclear Waste Management XVI, edited by C. Interrante and R. Mc Pabalan (Mat. Res. Soc. Symp. Proc. 294, 1993) pp. 171–176.

    CAS  Google Scholar 

  16. A. Lodding and P. Van Iseghem in Scientific Basis for Nuclear Waste Management XX, edited by W. Murphy and D. Knech (Mat. Res. Soc. Symp. Proc. 412, 1996) pp. 229–238.

    CAS  Google Scholar 

  17. B. Bunker, D. Tallant, T. Headley, G. Turner and R. Kirkpatrick, Phys. Chem. Glasses 29, p. 106 (1988).

    CAS  Google Scholar 

  18. E. Vernaz, B. Grambow, W. Lutze, K. Lemmens, and P. Van Iseghem in Proc. Fourth Conf, European Comm. on management and disposal of radioactive waste, edited by T. McMenamin (EUR 17543 EN, 1996), pp. 239–253.

  19. S. Xing, A. Buechele and I. Pegg in Scientific Basis for Nuclear Waste Management XVII, edited by A. Barkatt and R. Van Konynenbur, (Mat. Res. Soc. Symp. Proc. 333, 1994) pp. 541–548.

    CAS  Google Scholar 

  20. G. Perera, R. Doremus and W. Lanford., J. Am. Ceram. Soc. 74, p. 1269 (1991).

    Article  CAS  Google Scholar 

  21. O. Deruelle, P. Barboux, O. Spalla, S. Ricol, J. Lambard and E. Vernaz. in Glass, scientific research for high performance containment (CEA/Valrhô, Summer Session Proc., 1998), p. 435.

    Google Scholar 

  22. A. Helebrant, Silikaty 41 (4), p. 147 (1997).

    CAS  Google Scholar 

  23. T. Lee and D. Clark, Adv. Ceram. 20, p. 505 (1986).

    CAS  Google Scholar 

  24. L. Chick and L. Pederson, in Scientific Basis for Nuclear Waste Management VII, edited by G. Mc Vay (Mat. Res. Soc. Symp. Proc. 26, 1984) pp. 635–642.

    CAS  Google Scholar 

  25. Y. Xiao and A. Lasaga, Geochim. Cosmochim. Acta 60, p. 2283 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aertsens, M. Testing the Grambow Glass Dissolution Model by Comparing it With Monte Carlo Simulation Results. MRS Online Proceedings Library 556, 409 (1998). https://doi.org/10.1557/PROC-556-409

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-556-409

Navigation