Skip to main content
Log in

Laser Crystallized Polysilicon Thin Films and Applications

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Pulsed excimer-laser crystallization of amorphous silicon on non-crystalline substrates is an important processing technique for large-area polycrystalline silicon films and devices. Interest stems, in large part, from proposals to use polycrystalline silicon on glass in large-area electronic applications, such as flat-panel active matrix displays and two-dimensional imaging systems. The polycrystalline silicon is envisioned to increase the functionality and reduce costs over the current circuits that use amorphous silicon. Also, it is found that laser-crystallized polycrystalline silicon exhibits some interesting materials properties, such as a sharp peak in the average grain size with large lateral grain growth as a function of excimer laser energy density. The average grain size increases with increasing laser fluence and peaks on the order of several microns or two orders of magnitude larger than the film thickness. The grain size then decreases with further increases in laser fluence. This peak in grain size is accompanied by a similar peak in the Hall electron mobility. This is a significant relationship for devices since the grain structure has a substantial influence on electrical properties. But to the detriment of device parameters, this large lateral grain growth occurs over a very narrow range of laser fluences and is accompanied by a corresponding peak in the surface roughness of the films. These relationships between laser processing conditions, materials properties, and device parameters force a compromise between large grain size for high mobility and homogeneity of material for uniformity of device characteristics. A window does exist in process parameter space where good-quality devices with uniform characteristics have been obtained. In addition, these attributes have been achieved under conditions that yield good polycrystalline silicon and good amorphous silicon devices on the same wafer within a mm of one another, allowing for hybrid polycrystalline and amorphous silicon circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. {emSee, for example, (a)} M. Hack, P. Mei, R. Lujan, and A. G. Lewis, J. Non-Crystalline Solids, 164-166, 727 (1993) and (b) I-W. Wu, SID Digest, 19-22 (1995), and references contained therein.

  2. T. Samashima and S. Usui, Mat. Res. Soc. Symp. Proc. 71, 435 (1986)

    Article  Google Scholar 

  3. S. E. Ready, J. B. Boyce, R. Z. Bachrach, R. I. Johnson, K. Winer, G. B. Anderson, and C. C. Tsai, Mat. Res. Soc. Proc. 149, 345 (1989)

    Article  CAS  Google Scholar 

  4. K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, IEEE Trans. Electron Devices 36, 2868 (1989)

    Article  CAS  Google Scholar 

  5. R. Z. Bachrach, K. Winer, J. B. Boyce, S. E. Ready, R. I. Johnson, and G. B. Anderson, J. Electron. Mat. 19, 241 (1990)

    Article  CAS  Google Scholar 

  6. K. Shimizu, O. Sugiura, and M. Matsumura, Jpn. J. Appl. Phys., 29, LI775 (1990)

    Article  Google Scholar 

  7. R. I. Johnson, G. B. Anderson, J. B. Boyce, D. K. Fork, P. Mei, S. E. Ready, and S. Chen, Mat. Res. Soc. Proc. 297, 533 (1993)

    Article  CAS  Google Scholar 

  8. J. B. Boyce, G. B. Anderson, D. K. Fork, R. I. Johnson, P. Mei, S. E. Ready, Mat. Res. Soc. Proc. 321, 671 (1994)

    Article  CAS  Google Scholar 

  9. G. B. Anderson, J. B. Boyce, D. K. Fork, R. I. Johnson, P. Mei, and S. E. Ready, Mat. Res. Soc. Proc, 343, 709 (1994)

    Article  CAS  Google Scholar 

  10. S. D. Brotherton, D. J. McCulloch, J. B. Clegg, and J. P. Growers, IEEE Trans. Electron Devices 40, 407 (1993)

    Article  Google Scholar 

  11. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, S. E. Ready, D. K. Fork, and D. L. Smith, Mat. Res. Soc. Proc. 297, 151 (1993)

    Article  CAS  Google Scholar 

  12. P. Mei, J. B. Boyce, M. Hack, R. A. Lujan, R. I. Johnson, G. B. Anderson, D. K. Fork, and S. E. Ready, J. Appl. Phys. 76(5), 3194 (1994).

    Article  CAS  Google Scholar 

  13. S. Chen, J. B. Boyce, I-W. Wu, A. Chiang, R. I. Johnson, G. B. Anderson, and S. E. Ready, SID Proc. Of Active Matrix Liquid Crystal Displays Symp., p. 26 (1993)

    Google Scholar 

  14. See, for example, (a) H. Kuriyama, et al, Jpn. J. Appl. Phys. 31, 4550 (1992) and (b) I. Asai, N. Kato, M. Fuse, and T. Hamano, Jpn. J. Appl. Phys. 32, 474 (1993), and references contained therein.

  15. I-W. Wu, A. G. Lewis, T-Y. Huang, and A. Chiang, Proc. of Society for Information Display 31, 311 (1990)

    Google Scholar 

  16. M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson, A. G. Cullis, and N. G. Chew, Phys. Rev. Lett. 52, 2360 (1984)

    Article  CAS  Google Scholar 

  17. S. E. Ready, J. H. Roh, J. B. Boyce, and G. B. Anderson, Mat. Res. Soc. Proc. 258, 111 (1992)

    Article  CAS  Google Scholar 

  18. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975)

    Article  CAS  Google Scholar 

  19. J. S. Im, H. J. Kim, and M. O. Thompson, Appl. Phys. Lett. 63, 1969 (1993)

    Article  CAS  Google Scholar 

  20. D. K. Fork, G. B. Anderson, J. B. Boyce, R. I. Johnson, and P. Mei, Appl. Phys. Lett., to be published (1995)

    Google Scholar 

  21. T-J. King and I-W. Wu, unpublished results.

Download references

Acknowledgments

We thank S. E. Ready, I-W. Wu, T-J. King and N. Nickel for helpful discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyce, J.B., Mei, P., Fork, D.K. et al. Laser Crystallized Polysilicon Thin Films and Applications. MRS Online Proceedings Library 403, 305–314 (1995). https://doi.org/10.1557/PROC-403-305

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-403-305

Navigation