Skip to main content
Log in

Effects of Acetylacetone Additions on PZT Thin Film Processing

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Sol-gel processing methods are frequently used for the fabrication of lead zirconate titanate (PZT) thin films for many electronic applications. Our standard approach for film fabrication utilizes lead acetate and acetic acid modified metal alkoxides of zirconium and titanium in the preparation of our precursor solutions. This report highlights some of our recent results on the effects of the addition of a second chelating ligand, acetylacetone, to this process. We discuss the changes in film drying behavior, densification and ceramic microstructure which accompany acetylacetone additions to the precursor solution and relate the observed variations in processing behavior to differences in chemical precursor structure induced by the acetylacetone ligand. Improvements in thin film microstructure, ferroelectric and optical properties are observed when acetylacetone is added to the precursor solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example, Ferroelectric Thin Films II, edited by A. I. Kingon, E. R. Myers, and B. Tuttle, (Mat. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992).

  2. K. D. Budd, S. K. Dey, and D. A. Payne, Brit. Ceram. Soc. Proc. 36, 107 (1985).

    CAS  Google Scholar 

  3. R. W. Schwartz, B. C. Bunker, D. B. Dimos, R. A. Assink, B. A. Tuttle, D. R. Tallant, and I. A. Weinstock, Int. Ferroelectrics 2, 243 (1992).

    Article  CAS  Google Scholar 

  4. G. Yi, Z. Wu, and M. Sayer, J. Appl. Phys. 64 (5), 2717 (1988).

    Article  CAS  Google Scholar 

  5. C. D. Buchheit, T. J. Boyle, and R. W. Schwartz, unpublished results.

  6. C. D. E. Lakeman, J.-F. Campion, and D. A. Payne, in Ceramic Trans. 25, 411 (1992).

    Google Scholar 

  7. Y. Takahashi and K. Yamaguchi, J. Mat. Sci. 25, 3950 (1990).

    Article  CAS  Google Scholar 

  8. Y. Takahashi, Y. Matsuoka, K. Yamaguchi, M. Matsuki, and K. Kobayashi, J. Mat. Sci. 25, 3960 (1990).

    Article  CAS  Google Scholar 

  9. J. Fukushima, K. Kodaira, and T. Matsushita, J. Mater. Sci. 19, 595 (1984).

    Article  CAS  Google Scholar 

  10. R.W. Vest and J. Xu, Ferroelectrics 93, 21 (1989).

    Article  CAS  Google Scholar 

  11. G. H. Haertling, Ferroelectrics 116, 51 (1991).

    Article  CAS  Google Scholar 

  12. C. D. E. Lakeman, Ph.D. Thesis, University of Illinois at Urbana-Champaign (1994).

  13. R. W. Schwartz, T. J. Boyle, S. J. Lockwood, M. B. Sinclair, D. Dimos, and C. D. Buchheit, Integrated Ferroelectrics, accepted for publication (1994).

    Google Scholar 

  14. R. W. Schwartz, J. A. Voigt, T. A. Christenson, T. J. Boyle, and C. D. Buchheit, to be published in Ceramic Engineering & Science Proceedings (1995).

    Google Scholar 

  15. T. M. Alam, T. J. Boyle, C. D. Buchheit, T. W. Schwartz, and J. W. Ziller in Better Ceramics Through Chemistry VI. edited by A. K. Cheetham, C. J. Brinker, M. L. Mecartney, and C. Sanchez, (Mat. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, 1994). pp. 35–40.

  16. R. W. Schwartz, J. A. Voigt, C. D. Buchheit, and T. J. Boyle, Ceramic Trans., Ferroic Materials: Design, Preparation and Characteristics 43, 145 (1994).

    CAS  Google Scholar 

  17. L.F. Francis and D. A. Payne, in Ferroelectric Thin Films. edited by E. R. Myers, and A. I. Kingon, (Mat. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1992) pp. 173–178.

  18. H. M. Jang, M. K. Cho, and B. D. Yoo, this proceedings.

  19. R. W. Schwartz, R. A. Assink, and T. J. Headley, in Ferroelectric Thin Films II. edited by A. I. Kingon, E. R. Myers, and B. Tuttle, (Mat. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992) pp. 245–254.

  20. R.A. Assink and R. W. Schwartz, Chem. Mat. 5 (4), 511 (1993).

    Article  CAS  Google Scholar 

  21. S. J. Lockwood, R. W. Schwartz, B. A. Tuttle, and E. V. Thomas, in Ferroelectric Thin Films III, edited by E. R. Myers, B. A. Tuttle, S. B. Desu, and P. K. Larsen (Mat. Res. Soc. Symp. Proc. 310, Pittsburgh, PA) pp. 275–280.

  22. M. B. Sinclair, D. Dimos, B. G. Potter, and R. W. Schwartz, J. Am. Ceram. Soc. (1995) in press.

    Google Scholar 

  23. C. D. Chandler, C. Roger, and M. J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).

    Article  CAS  Google Scholar 

  24. C. Sanchez, F. Babonneau, S. Doeuff, and A. Leaustic, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D. R. Ulrich (Wiley Interscience, New York, 1988) pp. 77–87.

  25. C. J. Pouchert and J. Sehnke, The Aldrich Library of 13C and 1H FT-NMR Spectra. Edition 11 (1993) p. 661B.

    Google Scholar 

  26. A. Leaustic, F. Babonneau, and J. Livage, Chem. Mat. 1, 240 (1989).

    Article  CAS  Google Scholar 

  27. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Sol. 89, 206 (1987).

    Article  CAS  Google Scholar 

  28. K. H. Von Thiele, and M. Panse, Z. Anorg. Allg. Chem. 441, 23 (1978).

    Article  CAS  Google Scholar 

  29. R. J. Young, Introduction to Polymers (Chapman Hall, New York, 1981) pp. 123–128.

    Book  Google Scholar 

  30. C. J. Brinker, T. L. Ward, R. Sehgal, N. K. Raman, S. L. Hietala, D. M. Smith, D.-W. Hua, and T. J. Headley, J. Membane Science 77, 165 (1993).

    Article  CAS  Google Scholar 

  31. C.D. Buchheit and R. W. Schwartz, unpublished results.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, R.W., Assink, R.A., Dimos, D. et al. Effects of Acetylacetone Additions on PZT Thin Film Processing. MRS Online Proceedings Library 361, 377–387 (1994). https://doi.org/10.1557/PROC-361-377

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-361-377

Navigation