Skip to main content
Log in

Low-Energy Ar+ Implantation of Uhmw-Pe Fibers: Effect on Surface Energy, Chemistry, and Adhesion Characteristics

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Ultra-high molecular weight polyethylene (UHMW-PE) has a highly chain-extended and crystalline structure which is functionally inert and requires surface-modification before it can successfully operate as a reinforcement in polymer-matrix composites. Although plasma treatments are adequate for this purpose, recent work has shown that irradiation with low-energy inert gas ions can produce increases in interfacial shear strength (ISS), in epoxy matrices, which exceed those of commercial plasma treatments, and cause little degradation in tensile properties. Low energy ions are readily produced in high-current beams using gridded sources having moderate cost, and processing times may be a short as a few seconds. In this paper, we present results of recent experiments using argon ions accelerated to energies between 100 eV and 1 keV to irradiate 20-30 μm diameter UHMW-PE fibers to doses between 1x1016 and 1x1017 cm-2, and compare our findings with previous work at higher accelerating potentials. At the optimum dose (which increases with decreasing energy), greater than 9-fold improvements in ISS level, measured in epoxy-resin droplet pulloff tests, were found for ion irradiation at 0.25 keV. Scanning electron microscopy of fiber surfaces, of ion irradiated as well as commercial oxygen plasmatreated materials, revealed small crack-like pits in both cases, with the pits smaller and more uniformly distributed on the ion-irradiated fibers. Surface chemistry studies using X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) indicate that irradiation resulted in high surface concentrations of polar functional groups, and extensive surface oxidation. This was accompanied by a substantial increase in the polar component of surface energy, which resulted in improved fiber wetting by the resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Ozzello, D. S. Grummon, L. T. Drzal, J. Kalantar, I-H. Low and R. A. Moody, {tMRS Proc.} 153, 217–222 (1989).

    CAS  Google Scholar 

  2. D.S. Grunmmon, R. Schalek, A. Ozzello and L.T. Drzal in Structural Composites: Design and Processing Technology Pro. 6th Annual ASM/ESD Advanced Composites Conference, 155-162, Oct. (1990).

  3. D.S. Grummon, R. Schalek, A. Ozzello, J. Kalantar and L.T. Drzal, Nuc. Inst. and Meth., B59/60 1271–1275 (1991).

    Article  Google Scholar 

  4. J.J. Cuomo, S.M. Rossnagel and H.R. Kaufman in Handbook of Ion Beam Processing Technologyv Principles, Deposition. Film Modification and Synthesis, Park Ridge, NJ. (1989).

    Google Scholar 

  5. L.T. Nguyen, N-H. Sung and N.P. Suh, J. Polymer Sci.: Polym. Lett. Ed. 18, 541–548 (1980).

    CAS  Google Scholar 

  6. C. Y. Kim and D. A.I. Goring, J. Applied Polymer Sci. 15, 1357–1361 (1971).

    Article  Google Scholar 

  7. U. Gaur and T. Davidson, MRS Proc. 170, 309–314 (1990).

    Article  CAS  Google Scholar 

  8. T. Venkatesan, L. Calcagno, B.S. Elman and G. Foti in Ion Beam Modifications Of Insulators, Eds. P. Mazzoldi and G.W. Arnold}, Elsevier, N.Y. (1987).

  9. S.L. Koul, I.D. Campbell, D.C. McDonald, L.T. Chadderton, D. Fink, J.P. Biersack and M. Mueller, Nuc. Inst. Meth., B32 186–193 (1988).

    Article  CAS  Google Scholar 

  10. B. Miller, P. Muri and L. Rebenfeld, Compos. Sci. & Tech. 28, 17–32 (1986).

    Article  Google Scholar 

  11. D.H. Kaeble, P.J. Dynes and E.H. Cirlin, J. Adhesion, 6, 23–48 (1974).

    Article  Google Scholar 

  12. R. Schalek and D.S. Grummon in Advanced Comnosite Materials: New Developments and Anolications. Proc. Conf., 389-395 (1991).

  13. H. X. Nguyen, R. G. Merrill, A. K. Schriver and E. A. Leone in Structural Composites: Design and Processing Technologies Pro. 6th Annual ASM/ESD Advanced Composites Conference, 333-343, Oct. (1990).

  14. M. Schaible, H. Hayden and J. Tanaka, IEEE Trans. Electr. Insul. EI-22, 699 (1987)

    Article  CAS  Google Scholar 

  15. U.W. Gedde and M. lfwarson, Polym. Eng. Sci. 30, 202.(1990)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schalek, R., Hlavacek, M. & Grummon, D.S. Low-Energy Ar+ Implantation of Uhmw-Pe Fibers: Effect on Surface Energy, Chemistry, and Adhesion Characteristics. MRS Online Proceedings Library 236, 335–340 (1991). https://doi.org/10.1557/PROC-236-335

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-236-335

Navigation