Skip to main content
Log in

Nonideality Effects on the Ion Exchange Behavior of the Zeolite Mineral Clinoptilolite

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The presence of laterally-extensive zones of zeolitized tuff underlying the proposed high-level nuclear waste repository at Yucca Mt., Nevada, has focused attention on the potential role of zeolite minerals, particularly clinoptilolite, in sorbing radionuclides and thereby retarding their migration. Ion exchange between zeolites and aqueous solutions depends on factors including compositions of the aqueous and zeolite phases and solution concentration. In addition, the thermodynamic stability of zeolite minerals and their susceptibility to diagenetic alteration also depend on aqueous and solid phase compositions. Therefore, spatial variations in zeolite compositions which have been observed at Yucca Mt., as well as natural or repository-induced changes in groundwater chemistry, may result in variations in the effectiveness of the zeolite minerals as retardation agents. p]Ion exchange experiments were conducted to obtain isotherm data and to evaluate the use of thermodynamic models in describing and predicting the solid solution and ion exchange properties of clinoptilolite. The experimental data were interpreted using excess Gibbs energy models for the aqueous solution and zeolite phases to account for nonideality in the system. The results indicate that the thermodynamic models allow predictions of clinoptilolite ion exchange behavior at ionic strengths and relative concentrations for which data are absent, and provide a foundation for the interpretation of ion exchange equilibria in multicomponent geochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.R. Daniels, K. Wolfsberg, R.S. Rundberg, A.E. Ogard, J.F. Kerrisk, C.J. Duffy, T.W. Newton, S.D. Knight, F.O. Lawrence, V.L. Rundberg, M. Sykes, G. Thompson, B. Travis, E. Treher, R. Vidale, G. Walter, R. Aguilar, M. Cisneros, S. Maestas, A. Mitchell, P. Oliver, P. Oliver, N. Raybold, and P. Wanek, Summary Report on the Geochemistry of Yucca Mountain and Environs. LA-9328-MS, Los Alamos Nat. Lab., Los Alamos, NM (1982).

    Book  Google Scholar 

  2. R.E. Meyer, W.D. Arnold, F.I. Case, G.D. O'Kelley, and J.F. Land, Effects of Mineralogy on Sorption of Strontium and Cesium onto Calico Hills Tuff, NUREG/CR-5463 ORNL-6589, Oak Ridge Nat. Lab., Oak Ridge, TN (1987).

    Google Scholar 

  3. D.E. Broxton, R.G. Warren, R.C. Hagan, and G. Luedemann, Chemistry of Diagenetically Altered Tuffs at a Potential Nuclear Waste Repository, Yucca Mountain, Nve County, Nevada. LA-10802-MS, Los Alamos Nat. Lab., Los Alamos, NM (1986).

    Book  Google Scholar 

  4. R.M. Barrer, in Natural Zeolites: Occurrence, Properties. Use, edited by L.B. Sand and F.A. Mumpton (Pergamon Press, New York, 1978) p. 385.

    Google Scholar 

  5. T.S. Bowers and R.G. Burns, Amer. Min. 75, 601 (1990).

    CAS  Google Scholar 

  6. L.L. Ames, Amer. Min. 49, 127 (1964); 49, 1099 (1964).

    CAS  Google Scholar 

  7. M.J. Semmens and M. Seyfarth, in Natural Zeolites: Occurrence, Properties. Use (Pergamon Press, New York, 1978), p. 517.

    Google Scholar 

  8. R.P. Townsend and M. Loizidou, Zeolites 4, 191 (1984).

    Article  CAS  Google Scholar 

  9. M.F. Cheleshev, B.G. Berenschtein, T.A. Berenschtein, H.K. Grebanova, and H.C Martinova, Dokl. Akad. Nauk SSSR 210, 1110 (1973).

    Google Scholar 

  10. M.A. Jama and H. Yucel, Sep. Sci. Technol. 24, 1393 (1990).

    Google Scholar 

  11. D.W. Breck. Zeolite Molecular Sieves (Wiley, New York, 1976), p. 699.

    Google Scholar 

  12. R.M. BarrerR. M. and J. Klinowski, J. Chem. Soc, Faraday Trans. I 70, 2080 (1974).

    Article  Google Scholar 

  13. R.M. Barrer, in Natural Zeolites: Occurrence, Properties. Use, edited by L.B. Sand and F.A. Mumpton (Pergamon Press, New York, 1978) p. 385.

    Google Scholar 

  14. F. Helfferich, Ion Exchange (McGraw-Hill, New York, 1962).

    Google Scholar 

  15. A. Dyer, H. Enamy and R.P. Townsend, Sep. Sci. Technol. 16, 173 (1981).

    Article  CAS  Google Scholar 

  16. A.P. Vanselow, Soil Sci. 33, 95 (1932).

    Article  CAS  Google Scholar 

  17. R.P. Townsend, Pure Appl. Chem. 58, 1359 (1986).

    Article  CAS  Google Scholar 

  18. G.L. Gaines and H.G. Thomas, J. Chem. Phys. 21, 714 (1953).

    Article  CAS  Google Scholar 

  19. G. Sposito, Thermodynamics of Soil Solutions (Clarendon Press, Oxford, 1981).

    Google Scholar 

  20. W.J. Argersinger, A.W. Davidson and O.D. Bonner, Trans. Kansas Acad. Sci. 53, 404 (1950).

    Article  CAS  Google Scholar 

  21. R.M. Barrer and A.J. Walker, Trans. Far. Soc. 60, 171 (1964).

    Article  CAS  Google Scholar 

  22. P. Fletcher and R. Townsend, J. Chem. Soc. Far. Trans. I 81, 1731 (1985).

    Article  CAS  Google Scholar 

  23. E. Glueckauf, Nature 163, 414 (1949).

    Article  CAS  Google Scholar 

  24. K.S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Article  CAS  Google Scholar 

  25. K.S. Pitzer, Rev. Mineralogy 17, 97 (1987).

    Google Scholar 

  26. G. Scatchard, J. Amer. Chem. Soc. 90, 3124 (1968).

    Article  CAS  Google Scholar 

  27. E.A. Guggenheim, Philos. Mag. 19, 588 (1935).

    Article  CAS  Google Scholar 

  28. S.A. Grant and D.L. Sparks, J. Phys. Chem. 93, 6265 (1989).

    Article  CAS  Google Scholar 

  29. J. Ganguly and S.K. Saxena, Mixtures and Mineral Reactions (Springer-Verlag, Berlin, 1987), p. 14.

    Book  Google Scholar 

  30. R.P. Townsend, P. Fletcher, and M. Loizidou, in Proceedings of the 6th International Zeolite Conf., edited by D. Olson and A. Bisio (Butterworths, U.K., 1984), p. 110.

    Google Scholar 

  31. R.T. Pabalan and W.M. Murphy, Progress in Experimental Studies on the Thermodynamic and Ion Exchange Properties of Clinoptilolite. CNWRA-89-006, Center for Nuclear Waste Regulatory Analyses, San Antonio, TX 78228-0510 (1990).

    Google Scholar 

Download references

Acknowledgements

The assistance of P. Bertetti with the experiments, the helpful discussions with W.M. Murphy, and the thorough review by B. Vianni are gratefully acknowledged. This work was supported by the U.S. Nuclear Regulatory Commission under Contract No. NRC-02-88-005 and was conducted for the Waste Management Branch of the Office of Nuclear Regulatory Research.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabalan, R.T. Nonideality Effects on the Ion Exchange Behavior of the Zeolite Mineral Clinoptilolite. MRS Online Proceedings Library 212, 559–567 (1990). https://doi.org/10.1557/PROC-212-559

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/PROC-212-559

Navigation