Skip to main content
Log in

Hydrogen Passivation of Defects in Crystalline Silicon Solar Cells

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Hydrogen is commonly introduced into silicon solar cells to reduce the deleterious effects of defects and to increase cell efficiency. We have developed strategies by which hydrogen in silicon can be detected by IR spectroscopy with high sensitivity. The introduction of hydrogen into Si by the post-deposition annealing of a hydrogen-rich, SiNx coating has been investigated to determine hydrogen’s concentration and penetration depth. Different hydrogenation processes were studied so that their effectiveness for the passivation of bulk defects could be compared. The best conditions investigated in our experiments yielded a hydrogen concentration near 1015 cm-3 and a diffusion depth consistent with the diffusivity of H found by Van Wieringen and Warmoltz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hahn and A. Schöuml;necker, J. Phys. Condens. Matter 16, R1615 (2004).10.1088/0953-8984/16/50/R03

    Article  CAS  Google Scholar 

  2. T. Buonassisi A. A. Istratov M. D. Pickett M. Heuer J. P. Kalejs G. Hahn M. A. Marcus B. Lai Z. Cai, S. M. Heald T. F. Ciszek R. F. Clark D. W. Cunningham A. M. Gabor R. Joncyk S. Narayanan, E. Sauar and E. R. Weber Prog. Photovolt.: Res. Appl. 14, 513 (2006).

    Article  CAS  Google Scholar 

  3. N. Stoddard B. Wu L. Maisano R. Russell J. Creager R. Clark and J.M. Fernandez Proc. 18th Workshop on Crystalline Silcon Solar Cells and Modules, Vail, CO, Aug. 3-6, 2008, p. 7

    Google Scholar 

  4. A. G. Aberle Sol. Energy Mater. Sol. Cells 65, 239 (2001) reviews the SiNx passivation of c-Si solar cells and includes a historical overview.

    Article  CAS  Google Scholar 

  5. F. Duerinckx and J. Szlufcik Sol. Energy Mater. Sol. Cells 72, 231 (2002).

    Article  CAS  Google Scholar 

  6. A. Cuevas M. J. Kerr and J. Schmidt Proc. 3rd World Conf. on Photovoltaic Energy Conversion (IEEE Cat. No. 03CH37497), p. 913 (2003).

  7. H. F. W. Dekkers Dissertation, Catholic University of Leuven, 2008.

  8. S. M. Sze Physics of Semiconductor Devices, 2nd. Ed. (Wiley, New York, 1981).

    Google Scholar 

  9. F. Huster Proc. 20th European Photovoltaic Solar Energy Conference, Barcelona, 2005, p. 1466.

    Google Scholar 

  10. C. H. Seager and D. S. Ginley Appl. Phys. Lett. 34, 337 (1979).

    Article  CAS  Google Scholar 

  11. C. H. Seager D. J. Sharp J. K. G. Panitz R. V. D’Aiello, J. Vac. Sci. Technol. 20, 430 (1982).

    Article  CAS  Google Scholar 

  12. J. I. Hanoka C. H. Seager D. J. Sharp and J. K. G. Panitz Appl. Phys. Lett. 42, 618 (1983).

    Article  CAS  Google Scholar 

  13. J. L. Benton C. J. Doherty S. D. Ferris D. L. Flamm L. C. Kimerling and H. J. Leamy Appl. Phys. Lett. 36, 670 (1980).

    Article  CAS  Google Scholar 

  14. S. J. Pearton J. W. Corbett and M. Stavola Hydrogen in Crystalline Semiconductors (Springer-Verlag, Berlin, 1992).

    Book  Google Scholar 

  15. C. Dubé and J. I. Hanoka Appl. Phys. Lett. 45, 1135 (1984).

    Article  Google Scholar 

  16. R. Hezel and R. Schörner, J. Appl. Phys. 52, 3076 (1981).

    Article  CAS  Google Scholar 

  17. H. F. W. Dekkers S. DeWolf G. Agostinelli J. Szlufcik T. Pernau W.M. Arnoldbik H.D. Goldbach, R. E. I. Schropp . Proc. 3rd World Conf. on Photovoltaic Energy Conversion (IEEE Cat. No. 03CH37497), p. 983 (2003).

  18. Hydrogen could be detected by SIMS in Si samples containing a high concentration of O precipitates. See, G. Hahn D. Karg A. Schönecker, A. R. Burgers R. Ginige and K. Cherkaoui Conf. Rec. of the 31st IEEE Photovoltaic Specialist Conference (IEEE Cat. No. 05CH37608), p. 1035 (2005); G. Hahn A. Schönecker, A. R. Burgers R. Ginige K. Cherkaoui and D. Karg Proc. 20th European Photovoltaic Solar Energy Conf., Barcelona, p. 717 (2005).

  19. C. Boehme and G. Lucovsky J. Appl. Phys. 88, 6055 (2000); J. Vac. Sci. Technol. A 19, 2622 (2001).

    Article  CAS  Google Scholar 

  20. F. Jiang M. Stavola A. Rohatgi D. Kim J. Holt H. Atwater J. Kalejs Appl. Phys. Lett. 83, 931 (2003).

    Article  Google Scholar 

  21. S. Kleekajai F. Jiang M. Stavola V. Yelundur K. Nakayashiki A. Rohatgi G. Hahn S. Seren and J. Kalejs J. Appl. Phys. 100, 093517 (2006).

    Article  Google Scholar 

  22. An alternative probe of the hydrogenation of Si from a SiNx coating has recently been developed. In this method, SIMS is used to detect deuterium that has diffused from a deuterated SiNx coating through a Si substrate to an amorphous-Si trapping layer deposited on the substrate’s back surface. M. Sheoran, D. S. Kim A. Rohatgi H. F. W. Dekkers G. Beaucarne M. Young and S. Asher Appl. Phys. Lett. 92, 172107 (2008).

    Article  Google Scholar 

  23. S. J. Uftring M. Stavola P.M. Williams and G.D. Watkins Phys. Rev. B 51, 9612 (1995).

    Article  CAS  Google Scholar 

  24. M. G. Weinstein M. Stavola K. L. Stavola S. J. Uftring J. Weber J.-U. Sachse and H. Lemke Phys. Rev. B 65, 035206 (2002).

    Article  Google Scholar 

  25. M. M. Hilali A. Rohatgi and S. Asher IEEE Trans. Electron Devices 51, 948 (2004).

    Article  CAS  Google Scholar 

  26. V. Yelundur A. Rohatgi J.-W. Jeong and J. I. Hanoka IEEE Trans. Electron Devices 49, 1405 (2002).

    Article  CAS  Google Scholar 

  27. A. Rohatgi D. S. Kim K. Nakayashiki V. Yelundur and B. Rounsaville Appl. Phys. Lett. 84, 145 (2004).

    Article  CAS  Google Scholar 

  28. K. Nakayashiki A. Rohatgi S. Ostapenko and I. Tarasov J. Appl. Phys. 97, 024504 (2005).

    Article  Google Scholar 

  29. A. Van Wieringen, and N. Warmoltz Physica 22, 849 (1956).

    Article  Google Scholar 

  30. M. Stavola in Properties of Crystalline Si, edited by R. Hull (INSPEC, London, 1999), p. 511.

    Google Scholar 

  31. J. Hong W.M. M. Kessels W. J. Soppe A. W. Weeber W. M. Arnoldbik M. C. M. van de Sanden, J. Vac. Sci Technol. B 21, 2123 (2003).

    Article  CAS  Google Scholar 

  32. A. W. Weeber H. C. Rieffe I. G. Romijn W. C. Sinke W. J. Soppe Conf. Rec. of the 31st IEEE Photovoltaic Specialist Conference (IEEE Cat. No. 05CH37608), p. 1043 (2005).

  33. I. G. Romijn W. J. Soppe H. C. Rieffe W. C. Sinke and A. W. Weeber 15th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes, Vail, Colorado, Aug., 2005, Program, Extended Abstracts, and Papers, p. 85, unpublished.

    Google Scholar 

  34. H. F. W. Dekkers L. Carnel and G. Beaucarne Appl. Phys. Lett. 89, 013508 (2006).

    Article  Google Scholar 

  35. H. F. W. Dekkers G. Beaucarne M. Hiller H. Charifi and A. Slaoui Appl. Phys. Lett. 89, 211914 (2006).

    Article  Google Scholar 

  36. H. F. W. Dekkers S. DeWolf G. Agostinelli F. Duerinckx and G. Beaucarne Solar Energy Materials and Solar Cells 90, 3244 (2006).

    Article  CAS  Google Scholar 

  37. S. Kleekajai L. Wen C. Peng M. Stavola V. Yelundur K. Nakayashiki A. Rohatgi and J. Kalejs J. Appl. Phys., submitted.

  38. The Si-N bond density discussed in the present paper for high-density SiNx films is approximately equal to the optimal value reported in Refs. 32 and 33. The calibration factor reported in E. Bustarret M. Bensouda M. C. Habrard J. C. Bruyère, S. Poulin S. C. Gujrathi Phys. Rev. B 38, 8171 (1988), [Si-N] = 2x1019 cm-2 x I.A., was used to determine the Si-N bond density, similar to Refs. 32 and 33.

    Article  CAS  Google Scholar 

  39. The results reported here can depend on the trap density in the Si substrate. For example, in oxygenrich RGS Si that was deuterated from a SiNx:D surface layer, deuterium could be detected by SIMS with a concentration above 1016 cm-3 due to the strong trapping of deuterium by oxygen precipitates in the material. The indiffusion depth of deuterium was also reduced in this case. See Ref. [18].

  40. B. Hourahine R. Jones S. öberg, P. R. Briddon V. P. Markevich R. C. Newman J. Hermansson M. Kleverman, J. L. Lindström, L. I. Murin N. Fukata and M. Suezawa Physica B 308-310, 197 (2001).

    Google Scholar 

  41. J. L. McAfee and S. K. Estreicher Physica B 340-342, 637 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stavola, M., Jiang, F., Kleekajai, S. et al. Hydrogen Passivation of Defects in Crystalline Silicon Solar Cells. MRS Online Proceedings Library 1210, 101 (2009). https://doi.org/10.1557/PROC-1210-Q01-01

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1210-Q01-01

Navigation