Skip to main content
Log in

A Mössbauer Study of Iron in Vitrified Wastes

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

57Fe Mössbauer spectroscopy has been used to study the environment and oxidation state of iron in a series of vitrified sewage sludge ash (SSA) wastes, which are broadly similar in composition and variability to some intermediate-level legacy wastes (ILLW). The SSA wastes studied here are incapable of forming an homogeneous glass when melted at 1450 °C although increasing additions of CaO reduce the crystalline content, which consists of Ca3(PO4)2 and Ca3Mg3(PO4)4. Bulk glass transition temperatures of 670–850 °C have been measured, the value decreasing with increasing CaO content. Tetrahedrally coordinated Fe3+ appears to exist in vitrified SSA only at high CaO contents (> ∼ 29 mol. %) and whilst broadly similar to our previous results for simulated vitrified SSA, behavioural differences have been noted between fitted Mossbauer parameters for real and simulated vitrified SSA. We suggest that these could be attributable to the buffering action of carbon and other reducing agents in the real SSA wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.W. Donald, B.L. Metcalfe and R.N.J. Taylor, J. Mater. Sci. 32, 5851 (1997).

    Article  CAS  Google Scholar 

  2. P.A. Bingham and R.J. Hand, J. Appl. Ceram. 100, 120 (2001).

    Google Scholar 

  3. Chancellor’s Pre budget report 2002. http://www.hmtreasury.gov.uk/pre_budget_report/prebud_pbr02/report/prebud_pbr02_repchap7.cfm

  4. Landfill directive briefing paper, Defra, UK. http://www.defra.gov.uk/environment/waste/topics/landfill-dir/pdf/landfilldir.pdf

  5. B.O. Mysen, D. Virgo and F.A. Seifert, Amer. Mineral. 69, 834 (1984).

    CAS  Google Scholar 

  6. M. B. Volf, Chemical Approach to Glass, Elsevier, Amsterdam, 1984.

    Google Scholar 

  7. M. D. Dyar, Amer. Mineral. 70, 304 (1985).

    CAS  Google Scholar 

  8. G. Tomandl, in Glass: Science and Technology, 4B Ed. D.R. Uhlmann, N.J. Kreidl, Academic Press, New York, 1990, ch. 5.

    Google Scholar 

  9. RECOIL v.1.05, Intelligent Scientific Applications Inc., Ottowa, Canada.

  10. S.H. Kilcoyne, D. Greig and M.N. Gona, Hyperfine Interact. 165, 167 (2005).

    Article  Google Scholar 

  11. J. A. Duffy, J. Non-Cryst. Solids 297 (2002). 275.

    Article  CAS  Google Scholar 

  12. C. Rüssel and A. Wiedenroth, Chem. Geol. 213, 125 (2004).

    Article  Google Scholar 

  13. E. Antoni, L. Montagne, S. Daviero, G. Palavit, J. L. Bernard, A. Wattiaux and H. Vezin, J. Non-Cryst. Solids 345&346, 66 (2004).

    Article  CAS  Google Scholar 

  14. O.M. Hannant, P.A. Bingham, S.D. Forder and R.J. Hand, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol. B 48 (2007). (in press).

  15. O.M. Hannant, P.A. Bingham, S.D. Forder and R.J. Hand, Proc. XXIst Int. Congr. Glass, Strasbourg, France (2007), CD-ROM paper U30.

    Google Scholar 

  16. I. Merino, L.F. Arevalo and F. Romero, Waste Man. 25, 1046 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliver, M.H., Paul, A.B., Russell, J.H. et al. A Mössbauer Study of Iron in Vitrified Wastes. MRS Online Proceedings Library 1107, 215 (2008). https://doi.org/10.1557/PROC-1107-215

Download citation

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1107-215

Navigation