Skip to main content
Log in

A Tight-Binding Hamiltonian for Band Structure and Carrier Transport in Graphene Nanoribbons

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

To understand nanoribbons of graphene, we developed an ab initio parametrized fit to Carbon and Hydrogen chemical data, out to arbitrary neighbor interactions, including relaxations. Our computed band structure confirms the well-known three-family behavior of armchair band gaps but also predicts a similar familial behavior for conductance in nanoribbon transistors. The Boltzmann carrier transport simulations from calculated phonon spectra show, over a range of temperatures, the familial conductance behavior. Both the peak field-effect mobility and the “on” conductance increase with ribbon width, the later being proportional to the width and inversely proportional to the lattice temperature. We will also discuss phonon-limited scattering of charge carriers in graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Finkenstadt, G. Pennington and M. J. Mehl, Phys. Rev. B 76, 121405(R) (2007).

  2. G. Pennington and N. Goldsman, Phys. Rev. B 68, 045426 (2003); G. Pennington, N. Goldsman, A. Akturk and A. E. Wickenden, Appl. Phys. Lett. 90, 062110 (2007).

  3. B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M. D. Giles, M. A. Stettler and D. E. Nikonov, Appl. Phys. Lett. 88, 142102 (2006).

    Article  Google Scholar 

  4. The parameters used in this paper are available from the authors, or at http://cst-www.nrl.navy.mil/bind/

  5. D. A. Papaconstantopoulos, M. J. Mehl, S. C. Erwin and M. R. Pederson, in Tight-Binding Approach to Computational Materials Science, edited by P. Turchi, A. Gonis and L. Colombo, (Mater. Res. Soc. Proc. 491, Pittsburgh, PA, 1998) p. 221.

  6. R. E. Cohen, M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 50, 14694 (1994); M. J. Mehl and D. A. Papaconstantopoulos, ibid. 54, 4519 (1996).

  7. D. A. Papaconstantopoulos and M. J. Mehl, J. Phys.: Condens. Matter 15, R413 (2003), and references therein.

  8. D. Finkenstadt, N. Bernstein, J. L. Feldman, M. J. Mehl and D. A. Papaconstantopoulos, Phys. Rev. B 74, 184118 (2006).

    Article  Google Scholar 

  9. J. A. Greathouse, R. T. Cygan and B. A. Simmons, J. Phys. Chem. B 110, 6428 (2006).

    Article  CAS  Google Scholar 

  10. Y.-W. Son, M. L. Cohen and S. G. Louie, Nature 444, 347 (2006); Phys. Rev. Lett. 97, 216803 (2006).

  11. M. Y. Han, B. Ozyilmaz, Y. Zhang and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkenstadt, D., Pennington, G. & Mehl, M.J. A Tight-Binding Hamiltonian for Band Structure and Carrier Transport in Graphene Nanoribbons. MRS Online Proceedings Library 1057, 1041 (2007). https://doi.org/10.1557/PROC-1057-II10-41

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1057-II10-41

Navigation