Skip to main content
Log in

Oxide Thermoelectrics

  • Articles
  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Thermoelectricity in oxides, especially NaxCoO2 and related materials, is discussed from the point of view of first principles calculations and Boltzmann transport theory. The electronic structure of this material is exceptional in that it has a combination of very narrow bands and strong hybridization between metal d states and ligand p states. As shown within the framework of conventional Boltzmann transport theory, this leads to high Seebeck coefficients even at metallic carrier densities. This suggests a strategy of searching for other narrow band oxides that can be doped metallic with mobile carriers. Some possible avenues for finding such materials are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Terasaki, Y. Sasago, and K. Uchinokura, Phys. Rev. B 56, R12685 (1997).

    Article  CAS  Google Scholar 

  2. K. Fujita, T. Mochida, and K. Nakamura, Jpn. J. Appl. Phys. Part 1 40, 4644 (2001).

    Article  CAS  Google Scholar 

  3. S. Hebert, S. Lambert, D. Pelloquin, and A. Maignan, Phys. Rev. B 64, 17201 (2001).

    Article  Google Scholar 

  4. Y. Miyazaki, M. Onoda, T. Oku, K. Kikuchi, Y. Ishii, Y. Ono, Y. Morii, and T. Kajitani, J. Phys. Soc. Jpn. 71, 491 (2002).

    Article  CAS  Google Scholar 

  5. J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).

    Book  Google Scholar 

  6. D.J. Singh, Phys. Rev. B 61, 13397 (2000).

    Article  CAS  Google Scholar 

  7. H.B. Yang, Z.H. Pan, A.K.P. Sekharan, T. Sato, S. Souma, T. Takahashi, R. Jin, B.C. Sales, D. Mandrus, A.V. Fedorov, Z. Wang, and H. Ding, Phys. Rev. Lett. 95, 146401 (2005).

    Article  Google Scholar 

  8. D. Qian, L. Wray, D. Hsieh, D. Wu, J.L. Luo, N.L. Wang, A. Kuprin, A. Fedorov, R.J. Cava, L. Viciu, and M.Z. Hasan, Phys. Rev. Lett. 96, 046407 (2006).

    Article  CAS  Google Scholar 

  9. D.J. Singh and D. Kasinathan, Phys. Rev. Lett. 97, 016404 (2006).

    Article  CAS  Google Scholar 

  10. G.K.H. Madsen and D.J. Singh, Comp. Phys. Commun. 175, 67 (2006).

    Article  CAS  Google Scholar 

  11. D.J. Singh and D. Kasinathan, J. Electronic Materials 36, 736 (2007).

    Article  CAS  Google Scholar 

  12. H.J. Xiang and D.J. Singh, Phys. Rev. B 76, 195111 (2007).

    Article  Google Scholar 

  13. Y. Wang, N.S. Rogado, R.J. Cava, and N.P. Ong, Nature (London) 423, 425 (2003).

  14. D.J. Singh, R.C. Rai, J.L. Musfeldt, S. Auluck, N. Singh, P. Kalifah, S. McClure, and D.G. Mandrus, Chem. Mater. 18, 2696 (2006).

    Article  CAS  Google Scholar 

  15. G.B. Wilson-Short, D.J. Singh, M. Fornari, and M. Suewattana, Phys. Rev. B 75, 035121 (2007).

    Article  Google Scholar 

  16. Y. Klein, S. Hebert, D. Pelloquin, V. Hardy, and A. Maignan, Phys. Rev. B 73, 165121 (2006).

    Article  Google Scholar 

  17. E.F. Bertaut and C. Delorme, Acad. Sci. Paris, C.R. 238, 1829 (1954).

    CAS  Google Scholar 

  18. E.F. Bertaut and J. Dulac, J. Phys. Chem. Solids 21, 118 (1961).

    Article  CAS  Google Scholar 

  19. S. Shibasaki, W. Kobayashi, and I. Terasaki, Phys. Rev. B 74, 235110 (2006).

    Article  Google Scholar 

  20. D.J. Singh, Phys. Rev. B 76, 085110 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, D.J. Oxide Thermoelectrics. MRS Online Proceedings Library 1044, 205 (2007). https://doi.org/10.1557/PROC-1044-U02-05

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-1044-U02-05

Navigation