Skip to main content
Log in

Ultrafast Carrier Dynamics and Recombination in Green Emitting InGaN MQW LED

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Time-resolved photoluminescence studies can provide useful information for the development of InGaN/GaN heterostructures for long wavelength visible emitters. In this paper, we present results of time-resolved photoluminescence from samples grown using two different approaches to achieve green emission from InGaN/GaN MQWs. In one approach, samples, with high indium incorporation, were grown on a high quality AlN substrate to achieve green emission. The resulting photoluminescence decay of the green luminescence is long-lived and non-exponential. Quantitative analysis showed that the decay has a stretched-exponential characteristic, typical of InGaN/GaN MQW with potential fluctuation along the growth plane. This carrier localization, in a structure with low defect density, proves to be an effective means to achieve green emission. In another approach, a piezoelectric Stark-like ladder effect is used. In this case, a methodical layer-by-layer growth homogeneity optimization process was adopted to achieve an optical transition below the electron to heavy-hole (e1hh1) transition when the quantum well is subjected to the strong piezoelectric polarization dipole. This approach has proven to be successful in achieving green luminescence on conventional sapphire substrates. The resulting photoluminescence decay at 14 K, of a sample grown by this approach, is single exponential and shorter in duration than the decay observed in the first approach. This exponential decay is consistent with previous AFM studies that revealed a homogeneous active region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Nakamura and G. Fasol, The blue laser diode: GaN based light emitters and lasers (Springer, Berlin ; New York, 1997).

    Book  Google Scholar 

  2. F. Chen, A. N. Cartwright, H. Lu, and W. J. Schaff, Physica E 20, 308 (2004).

    Article  CAS  Google Scholar 

  3. W. Walukiewicz, S. X. Li, J. Wu, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, J. Cryst. Growth 269, 119 (2004).

    Article  CAS  Google Scholar 

  4. V. Y. Davydov and A. A. Klochikhin, Semiconductors 38, 861 (2004).

    Article  CAS  Google Scholar 

  5. S. Nishimura, K. Terashima, and H. Nagayoshi, in Conference Record of the IEEE Photovoltaic Specialists Conference Conference Record of the 31st IEEE Photovoltaic Specialists Conference - 2005, p. 725.

  6. N. F. Gardner, J. Bhat, D. Collins, L. Cook, M. G. Craford, R. M. Fletcher, P. Grillot, W. K. Gotz, M. Kueper, R. Khare, A. Kim, M. R. Krames, G. Harbers, M. Ludowise, P. S. Martin, and et al., in Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, (2002), p. 641.

  7. I. H. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996).

    Article  CAS  Google Scholar 

  8. S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 70, 2822 (1997).

    Article  CAS  Google Scholar 

  9. F. Chen, P. M. Sweeney, J. S. Flynn, D. Keogh, A. N. Cartwright, and M. C. Cheung, in GaN and Related Alloys (Materials Research Society Symposium - Proceedings. v 693 2002., Boston, MA, United States, 2001), p. p. 377.

    Google Scholar 

  10. T. Mukai, S. Nagahama, N. Iwasa, M. Senoh, and T. Yamada, J. Phys. Condens. Matter 13, 7089 (2001).

    CAS  Google Scholar 

  11. Y. S. Lin, K. J. Ma, C. C. Yang, and T. E. Weirich, J. Cryst. Growth 242, 35 (2002).

    Article  CAS  Google Scholar 

  12. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys. Condens. Matter 14, 3399 (2002).

    Article  CAS  Google Scholar 

  13. T. Tekeuchi, S. Sota, M. Katsuragawa, M. Kimori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 36, L382 (1997).

    Article  Google Scholar 

  14. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, Appl. Phys. Lett. 73, 1691 (1998).

    Article  CAS  Google Scholar 

  15. L. H. Peng, C. W. Chuang, and L. H. Lou, Appl. Phys. Lett. 74, 795 (1999).

    Article  CAS  Google Scholar 

  16. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, J. Appl. Phys. 85, 3786 (1999).

    Article  CAS  Google Scholar 

  17. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys. 2. 38, L163 (1999).

    Article  CAS  Google Scholar 

  18. C. Wetzel, T. Takeuchi, H. Amano, and I. Akasaki, Phys. Rev. B 62, R13302 (2000).

    Article  CAS  Google Scholar 

  19. F. Chen, M. C. Cheung, P. M. Sweeney, W. D. Kirkey, M. Furis, and A. N. Cartwright, J. Appl. Phys. 93, 4933 (2003).

    Article  CAS  Google Scholar 

  20. T. D. Christian Wetzel, Peng Li, Jeffrey S. Nelson, Phys. Status Solidi C 1, 2421 (2004).

    Article  CAS  Google Scholar 

  21. C. Wetzel, T. Salagaj, T. Detchprohm, P. Li, and J. S. Nelson, Appl. Phys. Lett. 85, 866 (2004).

    Article  CAS  Google Scholar 

  22. P. L. T. D. J. S. N. C. Wetzel, Phys. Status Solidi C 2, 2871 (2005).

    Article  CAS  Google Scholar 

  23. F. Shahedipour-Sandvik, J. R. Grandusky, M. Jamil, V. Jindal, S. B. Schujman, L. J. Schowalter, R. Liu, F. A. Ponce, M. Cheung, and A. Cartwright, in Proceedings of SPIE -The International Society for Optical Engineering Fifth International Conference on Solid State Lighting (SPIE, 2005), Vol. 5941, p. 37.

    Google Scholar 

  24. Y. Kawakami, K. Omae, A. Kaneta, K. Okamoto, Y. Narukawa, T. Mukai, and S. Fujita, J. Phys. Condens. Matter 13, 6993 (2001).

    Article  CAS  Google Scholar 

  25. M. Cheung, G. Namkoong, M. Furis, F. Chen, A. N. Cartwright, W. A. Doolittle, and A. Brown, in Gan and Related Alloys (Materials Research Society Symposium - Proceedings. v 743 2002., Boston, MA, United States, 2002), p. 659.

    Google Scholar 

  26. M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek, J. Appl. Phys. 86, 1114 (1999).

    Article  CAS  Google Scholar 

  27. S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida, and H. Okumura, J. Vac. Sci. Technol. B 21, 1856 (2003).

    Article  CAS  Google Scholar 

  28. M. Pophristic, F. H. Long, C. Tran, and I. T. Ferguson, MRS Internet J. Nitride Semicond. Res. 5S1, W11.58 (2000).

    Google Scholar 

  29. L. Pavesi, J. Appl. Phys. 80, 216 (1996).

    Article  CAS  Google Scholar 

  30. M. F. Shlesinger, Annu. Rev. Phys. Chem. 39, 269 (1988).

    Article  CAS  Google Scholar 

  31. A. J. García-Adeva and D. L. Huber, J. Lumin. 92, 65 (2001).

    Article  Google Scholar 

  32. R. Chen, J. Lumin. 102, 510 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cartwright, A.N., Cheung, MK., Shahedipour-Sandvik, F. et al. Ultrafast Carrier Dynamics and Recombination in Green Emitting InGaN MQW LED. MRS Online Proceedings Library 916, 410 (2006). https://doi.org/10.1557/PROC-0916-DD04-10

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0916-DD04-10

Navigation