Skip to main content
Log in

Piezoelectric polymers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

The science and technology of piezoelectric polymers has long been dominated by ferroelectric polymers from the polyvinylidene fluoride (PVDF) family. The piezoelectricity in this polymer class arises from the strong molecular dipoles within the polymer chain and from the resulting change of the dipole density upon application of a mechanical stimulus. Ferroelectric polymers show moderate piezoelectric coefficients (d33 and d31,32 around 20-30 pC/N) in comparison to ceramic piezoelectrics, with an acoustic impedance comparable to that of water. The thermal stability of the piezoelectric effect is limited to below 100°C, though stability up to 125°C has recently been announced. Applications of ferroelectric polymers emerged in many niches. A good example of a success story for PVDF applications are clamp-on transducers used as pressure sensor for Diesel injection lines, with selling numbers over 50 million pieces per year. A relatively new development are relaxor ferroelectric polymers, based on electron-irradiated poly(vinylidene fluoride) trifluoroethylene copolymers or on terpolymers of vinylidene fluoride, trifluoroethylene and chlorofluoroethylene. Relaxor ferroelectric copolymers exhibit strong electrostriction and thus large piezoelectric coefficients, when used under electric dc-bias fields. Internally charged cellular polymer foam electrets (ferroelectrets) resemble close similarities to ferroelectrics. They display large intrinsic piezoelectric d33-coefficients well above 100 pC/N and very small d31 and d32 coefficients, coupled with a limited thermal stability up to 50°C in the polypropylene workhorse material. The materials are pioneered in Finland and already entered the market in niches, for example in musical pick-ups. They promise large area applications, for example in surveillance and intruder systems. Finally, organic semiconductors have shown a rather unusual electromechanical response, governed by a power law S=V 3/2 of strain S versus voltage V, located in between traditional piezoelectricity and electrostriction. The field of piezoelectric polymers therefore received new stimulus, and the material class of piezoelectric polymers has been significantly broadened recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Katzir, Arch. Hist. Exact. Sci. 57, 61 (2003).

    Article  Google Scholar 

  2. H. Kawai, Jpn. J. Appl. Phys. 8, 975 (1969).

    Article  CAS  Google Scholar 

  3. J. G. Bergman, J. H. McFee and G. R. Crane, Appl. Phys. Lett. 18, 203 (1971).

    Article  CAS  Google Scholar 

  4. K. Nakamura and Y. Wada, J. Polym. Sci. A–29, 161 (1971).

    Google Scholar 

  5. A. J. Lovinger, Science 220, 1115 (1983).

    Article  CAS  Google Scholar 

  6. M. Thomson, paper AM W1.3. this symposium.

  7. Q. M. Zhang, V. Bharti and X. Zhao, Science 280, 2101 (1998).

    Article  CAS  Google Scholar 

  8. R. J. Klein, F. Xia, Q. M. Zhang, and F. Bauer, J. Appl. Phys. 97, 094105 (2005).

    Article  Google Scholar 

  9. S. B. Lang, S. Muensit, paper AM Wl.l. this symposium.

  10. A. Savolainen and K. Kirjavainen, J. Macromol. Sci. Chem. A26, 583 (1989).

    Article  CAS  Google Scholar 

  11. M. Paajanen, J. Lekkala, H. Välimäki, IEEE Trans. Diel. Electr. Insul. 8, 629 (2001).

    Article  CAS  Google Scholar 

  12. information of the company Emfit Ltd., Finland, www.emfit.com.

  13. information of the company B-Band, Finland, www.b-band.com.

  14. information of the company Screentec, Finland, www.screentec.com.

  15. L. Räissänen, paper PM W2.1. this symposium.

  16. M. Lindner, H. Hoislbauer, R Schwödiauer, S. Bauer-Gogonea and S. Bauer, IEEE Trans. Diel. Electr. Insul. 11, 255 (2004).

    Article  CAS  Google Scholar 

  17. S. Bauer, R. Gerhard-Multhaupt and G. M. Sessler, Physics Today 57, 37 (2004).

    Article  CAS  Google Scholar 

  18. G. Dennler, C. Lungenschmied, N. S. Sariciftci, R. Schwödiauer, S. Bauer and H. Reiss, Appl. Phys. Lett. 87, 163501 (2005).

    Article  Google Scholar 

  19. G. Dennler, N. S. Sanciftci, R. Schwödiauer, S. Bauer, and H. Reiss, J. Mater. Chem., accepted for publication

  20. information of the company AVL, Austria, www.avlditest.com.

  21. see for example F. Bauer, IEEE Trans. Ultrason. Ferroel. Freq. Contr. 47, 1448 (2000).

    Article  CAS  Google Scholar 

  22. M. Wegener and S. Bauer, Chem Phys Chem 6, 1014 (2005).

    Article  CAS  Google Scholar 

  23. J. Hillenbrand and G. M. Sessler, J. Acoust. Soc. Am. 116, 3267 (2004).

    Article  CAS  Google Scholar 

  24. F. I. Mopsik and M. G. Broadhurst, J. Appl. Phys. 46, 4204 (1975).

    Article  Google Scholar 

  25. H. E. Katz, X. M. Hong, A. Dodabalapur, and R. Sarpeshkar, J. Appl. Phys., 91, 1572 (2002).

    Article  CAS  Google Scholar 

  26. R. Schroeder, L. A. Majewski, and M. Grell, Adv. Mater. 16, 633 (2004).

    Article  CAS  Google Scholar 

  27. Th. B. Singh, N. Marjanovic, G. J. Matt, S. Sariciftci, R. Schwödiauer, and S. Bauer, Appl. Phys. Lett., 85, 5409 (2004);

    Article  CAS  Google Scholar 

  28. Th. B. Singh, N. Marjanovic, P. Stadler, M. Aumger, G. J. Matt, S. Günes, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, J. Appl. Phys., 97, 083714 (2005).

    Article  Google Scholar 

  29. R. C. G. Naber, C. Tañase, P. W. M. Blom, G. H. Gelinck, A. W. Marsman, F. J. Touwslager, S. Setayesh, and D. M. de Leeuw, Nat. Mat. 4, 243 (2005).

    Article  CAS  Google Scholar 

  30. B. Stadiober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. Lett. 86, 242902 (2005).

    Article  Google Scholar 

  31. I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, S. Bauer, S. Lacour and S. Wagner, unpublished.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauer, S., Bauer-Gogonea, S., Dansachmüller, M. et al. Piezoelectric polymers. MRS Online Proceedings Library 889, 102 (2005). https://doi.org/10.1557/PROC-0889-W01-02

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/PROC-0889-W01-02

Navigation