Skip to main content
Log in

Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0–2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorption are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.M. Ajayan, J.M. Tour Materials science: Nanotube composites. Nature 447, 1066 (2007)

    CAS  Google Scholar 

  2. R.H. Baughman, A.A. Zakhidov, de W.A. Heer Carbon nanotubes—The route toward applications. Science 297, 787 (2002)

    CAS  Google Scholar 

  3. M.L. Auad, M.A. Mosiewicki, C. Uzunpinar, R.J.J. Williams Single-wall carbon nanotubes/epoxy elastomers exhibiting high damping capacity in an extended temperature range. Compos. Sci. Technol. 69, 1088 (2009)

    CAS  Google Scholar 

  4. X. Zhou, E. Shin, K.W. Wang, C.E. Bakis Interfacial damping characteristics of carbon nanotube-based composites. Compos. Sci. Technol. 64, 2425 (2004)

    CAS  Google Scholar 

  5. J. Suhr, N. Koratkar Energy dissipation in carbon nanotube composites: A review. J. Mater. Sci. 43, 4370 (2008)

    CAS  Google Scholar 

  6. W. Zhang, R.C. Picu, N. Koratkar The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites. Nanotechnology 19, 285709 (2008)

    CAS  Google Scholar 

  7. J. Suhr, P. Victor, L. Ci, S. Sreekala, X. Zhang, O. Nalamasu, P.M. Ajayan Fatigue resistance of aligned carbon nanotube arrays under cyclic compression. Nat. Nanotechnol. 2, 417 (2007)

    CAS  Google Scholar 

  8. Y. Gao, P. He, J. Lian, L.M. Wang, D. Qian, J. Zhao, W. Wang, M.J. Schulz, J. Zhang, X.P. Zhou, D.L. Shi Improving the mechanical properties of polycarbonate nanocomposites with plasma-modified carbon nanofibers. J. Macromol. Sci. Part B Phys. 45, 671 (2006)

    CAS  Google Scholar 

  9. C.K. Kum, Y.T. Sung, M.S. Han, W.N. Kim, H.S. Lee, S.J. Lee, J. Joo Effects of morphology on the electrical and mechanical properties of the polycarbonate/multi-walled carbon nanotube composites. Macromol. Res. 14, 456 (2006)

    CAS  Google Scholar 

  10. P. Pötschke, H. Bruuunig, A. Janke, D. Fischer, D. Jehnichen Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer (Guildf.) 46, 10355 (2005)

    Google Scholar 

  11. Y.K. Choi, K. Sugimoto, S.M. Song, M. Endo Production and characterization of polycarbonate composite sheets reinforced with vapor grown carbon fiber. Composites Part A 37, 1944 (2006)

    Google Scholar 

  12. A. Eitan, F.T. Fisher, R. Andrews, L.C. Brinson, L.S. Schadler Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos. Sci. Technol. 66, 1162 (2006)

    CAS  Google Scholar 

  13. B.K. Satapathy, R. Weidisch, P. Pötschke, A. Janke Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 67, 867 (2007)

    CAS  Google Scholar 

  14. F. Rouabah, M. Fois, L. Ibos, A. Boudenne, D. Dadache, N. Haddaoui, P. Ausset Mechanical and thermal properties of polycarbonate. II. Influence of titanium dioxide content and quenching on pigmented polycarbonate. J. Appl. Polym. Sci. 106, 2710 (2007)

    CAS  Google Scholar 

  15. L.E. Hornberger, G. Fan, K.L. Devries Effect of thermal treatment on the impact strength of polycarbonate. J. Appl. Phys. 60, 2678 (1986)

    CAS  Google Scholar 

  16. N.J. Mills The mechanism of brittle-fracture in notched impact tests on polycarbonate. J. Mater. Sci. 11, 363 (1976)

    CAS  Google Scholar 

  17. J.T. Ryan Impact and yield properties of polycarbonate as a function of strain rate, molecular weight, thermal history, and temperature. Polym. Eng. Sci. 18, 264 (1978)

    CAS  Google Scholar 

  18. C. Cheng, A. Hiltner, E. Baer, P.R. Soskey, S.G. Mylonakis Deformation of rubber-toughened polycarbonate: Macroscale analysis of the damage zone. J. Appl. Polym. Sci. 52, 177 (1994)

    CAS  Google Scholar 

  19. K.-C. Ho, J.-R. Hwang, J.-L. Doong Impact fatigue of short glass fiber reinforced polycarbonate. J. Reinf. Plast. Compos. 16, 903 (1997)

    CAS  Google Scholar 

  20. G.L. Pitman, I.M. Ward, R.A. Duckett Effects of thermal pretreatment and molecular-weight on impact behavior of polycarbonate. J. Mater. Sci. 13, 2092 (1978)

    CAS  Google Scholar 

  21. S. Sarva, A.D. Mulliken, M.C. Boyce Mechanics of Taylor impact testing of polycarbonate. Int. J. Solids Struct. 44, 2381 (2007)

    CAS  Google Scholar 

  22. H.S. Shin, S.T. Park, S.J. Kim, J.H. Choi, J.T. Kim Deformation behavior of polymeric materials by Taylor impact. Int. J. Mod. Phys. B 22, 1235 (2008)

    CAS  Google Scholar 

  23. Y. Sato, M. Yoshida, K. Nagayama, Y. Horie Stress–strain relationships of polycarbonate over a wide range of strain rate, including a shock wave regime. Int. J. Impact Eng. 35, 1778 (2008)

    Google Scholar 

  24. V. Lerch, G. Gary, P. Herve Thermomechanical properties of polycarbonate under dynamic loading. J. Phys. IV (France) 110, 159 (2003)

    CAS  Google Scholar 

  25. A.D. Mulliken, M.C. Boyce Polycarbonate and a polycarbonate-POSS nanocomposite at high rates of deformation. J. Eng. Mater. Technol. 128, 543 (2006)

    CAS  Google Scholar 

  26. S.S. Sarva, M.C. Boyce Mechanics of polycarbonate during high-rate tension. J. Mech. Mater. Struct. 2, 1853 (2007)

    Google Scholar 

  27. Z. Xia, H.-J. Sue, A.J. Hsieh Impact fracture behavior of molecularly orientated polycarbonate sheets. J. Appl. Polym. Sci. 79, 2060 (2001)

    CAS  Google Scholar 

  28. X. Hou, W. Goldsmith Projectile perforation of moving plates: Experimental investigation. Int. J. Impact Eng. 18, 859 (1996)

    Google Scholar 

  29. R.P. Nimmer An analytic study of tensile and puncture test behavior as a function of large-strain properties. Polym. Eng. Sci. 27, 263 (1987)

    CAS  Google Scholar 

  30. R.P. Nimmer Analysis of the puncture of a bisphenol-a polycarbonate disc. Polym. Eng. Sci. 23, 155 (1983)

    Google Scholar 

  31. P. Pötschke, T.D. Fornes, D.R. Paul Rheological behavior of multiwalled carbon nanotube/polycarbonate composites. Polymer (Guildf.) 43, 3247 (2002)

    Google Scholar 

  32. O. Bunk, M. Bech, T.H. Jensen, R. Feidenhans’l, T. Binderup, A. Menzel, F. Pfeiffer Multimodal x-ray scatter imaging. N. J. Phys. 11, 123016 (2009)

    Article  CAS  Google Scholar 

  33. T. Casiraghi, G. Castiglioni, G. Ajroldi A study of the impact behavior of injection molded polypropylene using 2 different modes of testing. Plast. Rubber Process. Appl. 2, 353 (1982)

    Google Scholar 

  34. Y. Duan, A. Saigal, R. Greif, M.A. Zimmerman Modeling multiaxial impact behavior of a glassy polymer. Mater. Res. Innovat. 7, 10 (2003)

    Article  CAS  Google Scholar 

  35. T. Villmow, S. Pegel, P. Pötschke, U. Wagenknecht Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes. Compos. Sci. Technol. 68, 777 (2008)

    Article  CAS  Google Scholar 

  36. G. Beaucage, D.W. Schaefer Structural studies of complex systems using small-angle scattering: A unified Guinier power-law approach. J. Non-Cryst. Solids 172, 797 (1994)

    Article  Google Scholar 

  37. R.J. Roe Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University Press, New York 2000)

    Google Scholar 

  38. R.S. Justice, D.H. Wang, L.-S. Tan, D.W. Schaefer Simplified tube form factor for analysis of small-angle scattering data from carbon nanotube filled systems. J. Appl. Cryst. 40, s88 (2007)

    Article  CAS  Google Scholar 

  39. D.W. Schaefer, R.S. Justice How nano are nanocomposites? Macromolecules 40, 8501 (2007)

    Article  CAS  Google Scholar 

  40. D.W. Schaefer, T. Rieker, M. Agamalian, J.S. Lin, D. Fischer, S. Sukumaran, C.Y. Chen, G. Beaucage, C. Herd, J. Ivie Multilevel structure of reinforcing silica and carbon. J. Appl. Cryst. 33, 587 (2000)

    CAS  Google Scholar 

  41. T. Villmow, P. Pötschke, S. Pegel, L. Häussler, B. Kretzschmar Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in a poly(lactic acid) matrix. Polymer (Guildf.) 49, 3500 (2008)

    CAS  Google Scholar 

  42. M.C. Boyce, R.N. Haward The post yield deformation of glassy polymers The Physics of Glassy Polymers edited by R.N. Haward and R. Young (Chapman and Hall, London, UK 1997) 213

  43. B.A.G. Schrauwen, van L.C.A. Breemen, A.B. Spoelstra, L.E. Govaert, G.W.M. Peters, H.E.H. Meijer Structure, deformation, and failure of flow-oriented semicrystalline polymers. Macromolecules 37, 8618 (2004)

    CAS  Google Scholar 

  44. S.C. Tjong, Y.Z. Meng Effect of reactive compatibilizers on the mechanical properties of polycarbonate/poly(acrylonitrile-butadiene-styrene) blends. Eur. Polym. J. 36, 123 (2000)

    CAS  Google Scholar 

  45. W. Ding, A. Eitan, F.T. Fisher, X. Chen, D.A. Dikin, R. Andrews, L.C. Brinson, L.S. Schadler, R.S. Ruoff Direct observation of polymer sheathing in carbon nanotube-polycarbonate composites. Nano Lett. 3, 1593 (2003)

    CAS  Google Scholar 

  46. A.J. Hsieh, P. Moy, F.L. Beyer, P. Madison, E. Napadensky, J. Ren, R. Krishnamoorti Mechanical response and rheological properties of polycarbonate layered-silicate nanocomposites. Polym. Eng. Sci. 44, 825 (2004)

    CAS  Google Scholar 

  47. B.K. Satapathy, M. Ganß, R. Weidisch, P. Pötschke, D. Jehnichen, T. Keller, K.D. Jandt Ductile-to-semiductile transition in PP-MWNT nanocomposites. Macromol. Rapid Commun. 28, 834 (2007)

    CAS  Google Scholar 

  48. F.J. Carrión, J. Sanes, M.-D. Bermüdez Influence of ZnO nanoparticle filler on the properties and wear resistance of polycarbonate. Wear 262, 1504 (2007)

    Google Scholar 

  49. M. Sánchez-Soto, D.A. Schiraldi, S. Illescas Study of the morphology and properties of melt-mixed polycarbonate-POSS nanocomposites. Eur. Polym. J. 45, 341 (2009)

    Google Scholar 

  50. T.D. Fornes, J.W. Baur, Y. Sabba, E.L. Thomas Morphology and properties of melt-spun polycarbonate fibers containing single- and multi-wall carbon nanotubes. Polymer (Guildf.) 47, 1704 (2006)

    CAS  Google Scholar 

  51. B. Hornbostel, P. Pötschke, J. Kotz, S. Roth Single-walled carbon nanotubes/polycarbonate composites: Basic electrical and mechanical properties. Phys. Status Solidi B 243, 3445 (2006)

    CAS  Google Scholar 

  52. W. Zhang, J. Suhr, N.A. Koratkar Observation of high buckling stability in carbon nanotube polymer composites. Adv. Mater. 18, 452 (2006)

    Google Scholar 

  53. R.W. Truss, T.K. Yeow Effect of exfoliation and dispersion on the yield behavior of melt-compounded polyethylene-montmorillonite nanocomposites. J. Appl. Polym. Sci. 100, 3044 (2006)

    CAS  Google Scholar 

  54. Aït N. Hocine, P. Médéric, T. Aubry Mechanical properties of polyamide-12 layered silicate nanocomposites and their relations with structure. Polym. Test. 27, 330 (2008)

    Google Scholar 

  55. R.N. Rothon Particulate-Filled Polymer Composites (Rapra Technology Limited, Shropshire, UK 2003) 377–419

    Google Scholar 

  56. B. Chen, J.R.G. Evans Impact and tensile energies of fracture in polymer-clay nanocomposites. Polymer (Guildf.) 49, 5113 (2008)

    CAS  Google Scholar 

  57. K. Prashantha, J. Soulestin, M.F. Lacrampe, P. Krawczak, G. Dupin, M. Claes Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties. Compos. Sci. Technol. 69, 1756 (2009)

    CAS  Google Scholar 

  58. Y. Dong, D. Bhattacharyya Effects of clay type, clay/compatibiliser content and matrix viscosity on the mechanical properties of polypropylene/organoclay nanocomposites. Composites Part A 39, 1177 (2008)

    Google Scholar 

  59. K.K. Kar, S. Srivastava, A. Rahaman, S.K. Nayak Acrylonitrile-butadiene-styrene nanocomposites filled with nanosized alumina. Polym. Compos. 29, 489 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Bruuuhwiler.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/JMR/policy.html

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruuuhwiler, P.A., Barbezat, M., Necola, A. et al. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites. Journal of Materials Research 25, 1118–1130 (2010). https://doi.org/10.1557/JMR.2010.0139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0139

Navigation