Skip to main content
Log in

Nano/micro-mechanical and tribological characterization of Ar, C, N, and Ne ion-implanted Si

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ion implantation has been widely used to improve the mechanical and tribological properties of single crystalline silicon, an essential material for the semiconductor industry. In this study, the effects of four different ion implantations, Ar, C, N, and Ne ions, on the mechanical and tribological properties of single crystal Si were investigated at both the nanoscale and the microscale. Nanoindentation and microindentation were used to measure the mechanical properties and fracture toughness of ion-implanted Si. Nano and micro scratch and wear tests were performed to study the tribological behaviors of different ion-implanted Si. The relationship between the mechanical properties and tribological behavior and the damage mechanism of scratch and wear were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Bhushan, X.D. Li Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12, 54 (1997)

    CAS  Google Scholar 

  2. B. Bhushan, B.K. Gupta Handbook of Tribology: Materials, Coating, and Surface Treatments (McGraw-Hill, New York 1991)

    Google Scholar 

  3. M. Szabadi, P. Hess, A.J. Kellock, H. Coufal, J.E.E. Baglin Elastic and mechanical properties of ion-implanted silicon determined by surface-acoustic-wave spectrometry. Phys. Rev. B 58, 8941 (1998)

    CAS  Google Scholar 

  4. R. Sun, T. Xu, Q.J. Xue Effect of Ar+ ion implantation on the nano-mechanical properties and microstructure of single crystal silicon. Appl. Surf. Sci. 249, 386 (2005)

    CAS  Google Scholar 

  5. P. Kodali, M. Hawley, K.C. Walter, K. Hubbard, N. Yu, J.R. Tesmer, T.E. Levine, M. Nastasi Tribological properties of carbon- and nitrogen-implanted Si (100). Wear 205, 144 (1997)

    CAS  Google Scholar 

  6. M. Ueda, C.M. Lepienski, E.C. Rangel, N.C. Cruz, F.G. Dias Nanohardness and contact angle of Si wafers implanted with N and C and Al alloy with N by plasma ion implantation. Surf. Coat. Technol. 156, 190 (2002)

    CAS  Google Scholar 

  7. P.K. Chu Contamination issues in hydrogen plasma immersion ion implantation of silicon—A brief review. Surf. Coat. Technol. 156, 244 (2002)

    CAS  Google Scholar 

  8. S.V. Ovsyannikov, V.V. Shchennikov, I.V. Antonova, V.V. Shchennikov Jr., Y.S. Ponosov Effect of hydrogen implantation on semiconductor-metal transition and high-pressure thermopower in Si. Mater. Sci. Eng., A 462, 343 (2007)

    Google Scholar 

  9. M. Ueda, A.F. Beloto, H. Reuther, S. Parascandola Plasma immersion ion implantation of nitrogen in Si: Formation of SiO2, Si3N4 and stressed layers under thermal and sputtering effects. Surf. Coat. Technol. 136, 244 (2001)

    CAS  Google Scholar 

  10. J.G. Swadener, M. Nastasi Increasing the fracture toughness of silicon by ion implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 206, 937 (2003)

    CAS  Google Scholar 

  11. E. Oliviero, S. Peripolli, L. Amaral, P.F.P. Fichtner, M.F. Beaufort, J.F. Barbot, S.E. Donnelly Damage accumulation in neon implanted silicon. J. Appl. Phys. 100, 043505 (2006)

    Google Scholar 

  12. P. Mishra, S.R. Bhattacharyya, D. Ghose Nanoindentation on single-crystal Si modified by 100 keV Cr+ implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 1629 (2008)

    CAS  Google Scholar 

  13. P.M. Nagy, D. Aranyi, P. Horvath, G. Peto, E. Kalman Nanomechanical properties of ion-implanted Si. Surf. Interface Anal. 40, 875 (2008)

    CAS  Google Scholar 

  14. Stopping and Range of Ions in Matterhttp://www.srim.org/

  15. A. Simionescu, G. Hobler, S. Bogen, L. Frey, H. Ryssel Model for the electronic stopping power of channeled ions in silicon around the stopping power maximum. Nucl. Instrum. Methods Phys. Res., Sect. B 106, 47 (1995)

    CAS  Google Scholar 

  16. X. Chen, J. Vlassak A numerical study on the measurements of thin film mechanical properties by means of nanoindentation. J. Mater. Res. 16, 2974 (2001)

    CAS  Google Scholar 

  17. Z.H. Xu, D. Rowcliffe Finite element analysis of substrate effects on indentation behavior of thin films. Thin Solid Films 447–448, 399 (2004)

    Google Scholar 

  18. W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)

    CAS  Google Scholar 

  19. Z.H. Xu, X.D. Li Effects of indenter geometry and material properties on the correction factor of Sneddon’s relationship for nanoindentation of elastic and elastic-plastic materials. Acta Mater. 56, 1399 (2008)

    CAS  Google Scholar 

  20. B.R. Lawn, A.G. Evans, D.B. Marshall Elastic/plastic indentation damage in ceramics: The median/radial crack system. J. Am. Ceram. Soc. 63, 574 (1980)

    CAS  Google Scholar 

  21. D.R. Franca, A. Blouin All-optical measurement of in-plane and out-of-plane Young’s modulus and Poisson’s ratio in silicon wafers by means of vibration modes. Meas. Sci. Technol. 15, 859 (2004)

    CAS  Google Scholar 

  22. D.M. Follstaedt, J.A. Knapp, S.M. Myers Mechanical properties of ion-implanted amorphous silicon. J. Mater. Res. 19, 338 (2004)

    CAS  Google Scholar 

  23. P. Brault, P. Ranson, H. Estrade-Szwarckopf, B. Rousseau Chemical physics of fluorine plasma-etched silicon surfaces: Study of surface contaminations. J. Appl. Phys. 68, 1702 (1990)

    CAS  Google Scholar 

  24. D. Rats, L. Vandenbulcke, R. Herbin, R. Benoit, R. Erre, V. Serin, J. Sevely Characterization of diamond films deposited on titanium and its alloys. Thin Solid Films 270, 177 (1995)

    CAS  Google Scholar 

  25. L.C. Chen, C.Y. Yang, D.M. Bhusari, K.H. Chen, M.C. Lin, T.J. Chuang Formation of crystalline silicon carbon nitride films by microwave plasma-enhanced chemical vapor deposition. Diamond Relat. Mater. 5, 514 (1996)

    CAS  Google Scholar 

  26. A.R. Chourasia Core level XPS spectra of silicon carbide using zirconium and magnesium radiations. Surf. Sci. Spectra 8, 45 (2001)

    CAS  Google Scholar 

  27. L. Kubler, J.L. Bischoff, D. Bolmont General comparison of the surface processes involved in nitridation of Si (100)-2X1 by NH3 and in SiNx film deposition: A photoemission study. Phys. Rev. B 38, 13113 (1988)

    CAS  Google Scholar 

  28. S. Adachi, H. Mori, M. Takahashi Model-dielectric-function analysis of ion-implanted Si (100) wafers. J. Appl. Phys. 93, 115 (2003)

    CAS  Google Scholar 

  29. D. Paramanik, S. Dey, V. Granesan, S. Varma Shape transition of nanostructures created on Si (100) surface after MeV implantation. Nucl. Instrum. Methods Phys. Res., Sect. B 244, 74 (2006)

    CAS  Google Scholar 

  30. H. Mori, S. Adachi, M. Takahashi Optical properties of self-ion-implanted Si (100) studied by spectroscopic ellipsometry. J. Appl. Phys. 90, 87 (2001)

    CAS  Google Scholar 

  31. G. Kuri, T.R. Yang MeV Al+ and Al2+ ions implantation in Si (100): Surface roughness and defects in the bulk. Appl. Phys. A 79, 443 (2000)

    Google Scholar 

  32. K. Tsunoda, S. Adachi, M. Takahashi Spectroscopic ellipsometry study of ion-implanted Si (100) wafers. J. Appl. Phys. 91, 2936 (2002)

    CAS  Google Scholar 

  33. A. Leyland, A. Matthews On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimized tribological behaviour. Wear 240, 1 (2000)

    Google Scholar 

  34. B. Shi, J.L. Sullivan, B.D. Beake An investigation into which factors control the nanotribological behaviour of thin sputtered carbon films. J. Phys. D: Appl. Phys. 41, 045303 (2008)

    Google Scholar 

  35. X.D. Li, B. Bhushan, K. Takashima, C.W. Baek, Y.K. Kim Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481 (2003)

    CAS  Google Scholar 

  36. X.D. Li, B. Bhushan Micro/nanomechanical and tribological studies of bulk and thin-film materials used in magnetic recording heads. Thin Solid Films 398–399, 313 (2001)

    Google Scholar 

  37. H. Jensen, U.M. Jensen, G. Sorensen Reactively sputtered Cr nitride coatings studies using the acoustic emission scratch test technique. Surf. Coat. Technol. 74–75, 297 (1995)

    Google Scholar 

  38. S.S. Cho, K. Komvopoulos Correlation between acoustic emission and wear of multi-layer ceramic coated carbide tools. Trans. ASME 119, 238 (1997)

    Google Scholar 

  39. C.W. Cho, Y.Z. Lee Wear-life evaluation of CrN-coated steels using acoustic emission signals. Surf. Coat. Technol. 127, 59 (2000)

    CAS  Google Scholar 

  40. T.E. Fischer, Z. Zhu, H. Kim, D.S. Shin Genesis and role of wear debris in sliding wear of ceramics. Wear 245, 53 (2000)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, ZH., Park, YB. & Li, X. Nano/micro-mechanical and tribological characterization of Ar, C, N, and Ne ion-implanted Si. Journal of Materials Research 25, 880–889 (2010). https://doi.org/10.1557/JMR.2010.0117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0117

Navigation