Skip to main content
Log in

Rare-earth transition-metal intermetallic compounds produced via self-propagating, high-temperature synthesis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Several binary intermetallic compounds—each containing a rare-earth (RE) element paired with a transition metal (TM)—were prepared by self-propagating, high-temperature synthesis (SHS). Thin multilayers, composed of alternating Sc or Y (RE element) and Ag, Cu, or Au (TM), were first deposited by direct current magnetron sputtering. Once the initially distinct layers were stimulated and caused to mix, exothermic reactions propagated to completion. X-ray diffraction revealed that Sc/Au, Sc/Cu, Y/Au, and Y/Cu multilayers react in vacuum to form single-phase, cubic B2 structures. Multilayers containing Ag and a RE metal formed cubic B2 (RE)Ag and a minority (RE)Ag2 phase. The influence of an oxygen-containing environment on the reaction dynamics and the formation of phase were investigated, providing evidence for the participation of secondary combustion reactions during metal-metal SHS. High-speed photography demonstrated reaction propagation speeds that ranged from 0.1–40.0 m/s (dependent on material system and foil design). Both steady and spin-like reaction modes were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Gschneidner, A. Russell, A. Pecharsky, J. Morris, Z.H. Zhang, T. Lograsso, D. Hsu, C.H.C. Lo, Y.Y. Ye, A. Slager, D. Kesse A family of ductile intermetallic compounds. Nat. Mater. 2, 587 (2003)

    Article  CAS  Google Scholar 

  2. J.R. Morris, Y.Y. Ye, Y.B. Lee, B.N. Harmon, K.A. Gschneidner, A.M. Russell Ab initio calculation of bulk and defect properties of ductile rare-earth intermetallic compounds. Acta Mater. 52, 4849 (2004)

    Article  CAS  Google Scholar 

  3. A.M. Russell, Z. Zhang, T.A. Lograsso, C.C.H. Lo, A.O. Pecharsky, J.R. Morris, Y. Ye, K.A. Gschneidner, A.J. Slager Mechanical properties of single crystal YAg. Acta Mater. 52, 4033 (2004)

    Article  CAS  Google Scholar 

  4. Z. Zhang, A.M. Russell, S.B. Biner, K.A. Gschneidner, C.C.H. Lo Fracture toughness of polycrystalline YCu, DyCu, and YAg. Intermetallics 13, 559 (2005)

    Article  CAS  Google Scholar 

  5. G.L. Chen, C.T. Liu Moisture induced environmental embrittlement of intermetallics. Int. Mater. Rev. 46, 253 (2001)

    Article  CAS  Google Scholar 

  6. R.L. Fleischer, R.J. Zabala Mechanical-properties of diverse binary high-temperature intermetallic compounds. Metall. Mater. Trans. A 21, 2709 (1990)

    Article  Google Scholar 

  7. D.B. Miracle Overview No. 104—The physical and mechanical properties of NiAl. Acta Metall. Mater. 41, 649 (1993)

    Article  CAS  Google Scholar 

  8. L. Chen, P. Peng, S.C. Han Study on point defect structures of B2-YX (X=Cu, Rh Ag, In) intermetallic compound and their basic physics properties. Rare Met. Mater. Eng. 36, 2089 (2007)

    CAS  Google Scholar 

  9. Q. Chen, S.B. Biner Stability of perfect dislocations in rare-earth intermetallic compounds: YCu, YAg and YZn. Acta Mater. 53, 3215 (2005)

    Article  CAS  Google Scholar 

  10. S. Xie, A.M. Russell, A.T. Becker, K.A. Gschneidner Dislocation core structures in YAg, a ductile B2 CsCl-type intermetallic compound. Scr. Mater. 58, 1066 (2008)

    CAS  Google Scholar 

  11. K.A. Gschneidner, F.W. Calderwood The Ag-Y (silver-yttrium) system. J. Phase Equilib. 4, 377 (1983)

    Google Scholar 

  12. K.A. Gschneidner, F.W. Calderwood The Ag-Sc (silver-scandium) system. J. Phase Equilib. 4, 375 (1983)

    Google Scholar 

  13. H. Okamoto Cu-Y (copper-yttrium). J. Phase Equilib. Diffus. 19, 398 (1998)

    CAS  Google Scholar 

  14. H. Okamoto Au-Sc (gold-scandium). J. Phase Equilib. Diffus. 19, 599 (1998)

    CAS  Google Scholar 

  15. A. Saccone, S. Delfino, D. Maccio, R. Ferro Phase equilibria investigation of the yttrium-gold system. J. Chem. Phys. 94, 948 (1997)

    CAS  Google Scholar 

  16. M.A. Turchanin Phase equilibria and thermodynamics of binary copper systems with 3d-metals. I. The copper-scandium system. Powder Metall. Met. Ceram. 45, 143 (2006)

    CAS  Google Scholar 

  17. C.C. Chao, P. Duwez, H.L. Luo CsCl-type compounds in binary alloys of rare-earth metals with gold and silver. J. Appl. Phys. 34, 1971 (1963)

    CAS  Google Scholar 

  18. K.A. Gschneidner, Y. Mudryk, A.T. Becker, J.L. Larson The Crystal Structures of Some RM and RM2 Compounds (Where R = Rare Earth Metal and M = Non-rare Earth Metal) (Pergamon-Elsevier Science Ltd., Genoa, Italy 2008) 8–10

    Google Scholar 

  19. K. Morsi Review: Reaction synthesis processing of Ni-Al intermetallic materials. Mater. Sci. Eng., A 299, 1 (2001)

    Google Scholar 

  20. H.C. Yi, J.J. Moore Combustion synthesis of TiNi intermetallic compounds. 1: Determination of heat of fusion of TiNi and heat-capacity of liquid TiNi. J. Mater. Sci. 24, 3449 (1989)

    CAS  Google Scholar 

  21. H.C. Yi, A. Petric, J.J. Moore Effect of heating rate on the combustion synthesis of Ti-Al intermetallic compounds. J. Mater. Sci. 27, 6797 (1992)

    CAS  Google Scholar 

  22. C.R. Bowen, B. Derby Selfpropagating high temperature synthesis of ceramic materials. Br. Ceram. Trans. 96, 25 (1997)

    CAS  Google Scholar 

  23. M.A. Meyers, E.A. Olevsky, J. Ma, M. Jamet Combustion synthesis/densification of an Al2O3-TiB2 composite. Mater. Sci. Eng., A 311, 83 (2001)

    Google Scholar 

  24. H.J. Feng, J.J. Moore In situ combustion synthesis of dense ceramic and ceramic-metal interpenetrating phase composites. Metall. Mater. Trans. B 26, 265 (1995)

    Google Scholar 

  25. A. Ringuede, D. Bronine, J.R. Frade Assessment of Ni/YSZ anodes prepared by combustion synthesis. Solid State Ionics 146, 219 (2002)

    CAS  Google Scholar 

  26. H.C. Yi, T.C. Woodger, J.J. Moore, J.Y. Guigne The effect of gravity on the combustion synthesis of metal-ceramic composites. Metall. Mater. Trans. B 29, 889 (1998)

    Google Scholar 

  27. J.J. Moore, H.J. Feng Combustion synthesis of advanced materials. 1: Reaction parameters. Prog. Mater. Sci. 39, 243 (1995)

    CAS  Google Scholar 

  28. J.J. Moore, H.J. Feng Combustion synthesis of advanced materials. 2: Classification, applications and modeling. Prog. Mater. Sci. 39, 275 (1995)

    CAS  Google Scholar 

  29. H.C. Yi, J.J. Moore Self-propagating high-temperature (combustion) synthesis (SHS) of powder-compacted materials. J. Mater. Sci. 25, 1159 (1990)

    CAS  Google Scholar 

  30. W.D. Westwood Sputter Deposition Vol. 2 (American Vacuum Society, New York 2003)

  31. T.W. Barbee, T. Weihs U.S. Patent No. 5538795-A (1996)

    Google Scholar 

  32. D.P. Adams, V.C. Hodges, M.M. Bai, J.E. Jones, M.A. Rodriguez, T. Buchheit, J.J. Moore Exothermic reactions in Co/Al nanolaminates. J. Appl. Phys. 104, 043502 (2008)

    Article  CAS  Google Scholar 

  33. D.P. Adams, M.A. Rodriguez, C.P. Tigges, P.G. Kotula Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films. J. Mater. Res. 21, 3168 (2006)

    Article  CAS  Google Scholar 

  34. K.J. Blobaum, Van D. Heerden, A.J. Gavens, T.P. Weihs Al/Ni formation reactions: Characterization of the metastable Al9Ni2 phase and analysis of its formation. Acta Mater. 51, 3871 (2003)

    Article  CAS  Google Scholar 

  35. A. Duckham, S.J. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin, O.M. Knio Reactive nanostructured foil used as a heat source for joining titanium. J. Appl. Phys. 96, 2336 (2004)

    Article  CAS  Google Scholar 

  36. A.J. Gavens, Van D. Heerden, A.B. Mann, M.E. Reiss, T.P. Weihs Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 (2000)

    Article  CAS  Google Scholar 

  37. M.E. Reiss, C.M. Esber, Van D. Heerden, A.J. Gavens, M.E. Williams, T.P. Weihs Self-propagating formation reactions in Nb/Si multilayers. Mater. Sci. Eng., A 261, 217 (1999)

    Article  Google Scholar 

  38. A. Ustinov, L. Olikhovska, T. Melnichenko, A. Shyshkin Effect of overall composition on thermally induced solid-state transformations in thick EB PVD Al/Ni multilayers. Surf. Coat. Technol. 202, 3832 (2008)

    Article  CAS  Google Scholar 

  39. A.J. Swiston, E. Besnoin, A. Duckham, O.M. Knio, T.P. Weihs, T.C. Hufnagel Thermal and microstructural effects of welding metallic glasses by self-propagating reactions in multilayer foils. Acta Mater. 53, 3713 (2005)

    Article  CAS  Google Scholar 

  40. A.J. Swiston, T.C. Hufnagel, T.P. Weihs Joining bulk metallic glass using reactive multilayer foils. Scr. Mater. 48, 1575 (2003)

    CAS  Google Scholar 

  41. M.S. Tong, D. Sturgess, K.N. Tu, J.M. Yang Solder joints fabricated by explosively reacting nanolayers. Appl. Phys. Lett. 92, 144101 (2008)

    Google Scholar 

  42. J.C. Trenkle, T.P. Weihs, T.C. Hufnagel Fracture toughness of bulk metallic glass welds made using nanostructured reactive multilayer foils. Scr. Mater. 58, 315 (2008)

    CAS  Google Scholar 

  43. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, M. Powers, M. Whitener, T.P. Weihs Room-temperature soldering with nanostructured foils. Appl. Phys. Lett. 83, 3987 (2003)

    CAS  Google Scholar 

  44. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, T.P. Weihs Joining of stainless-steel specimens with nanostructured Al/Ni foils. J. Appl. Phys. 95, 248 (2004)

    CAS  Google Scholar 

  45. J. Wang, E. Besnoin, O.M. Knio, T.P. Weihs Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97, 114307 (2005)

    Google Scholar 

  46. C. Colinet The Thermodynamic Properties of Rare-earth Metallic Systems (Elsevier Science Sa Lausanne, Helsinki, Finland 1994) 409–422

    Google Scholar 

  47. D.R. Lide CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, FL 2004)

    Google Scholar 

  48. A.R. Miedema, F.R. Deboer, R. Boom Model predictions for enthalpy of formation of transition-metal alloys. Calphad 1, 341 (1977)

    Article  CAS  Google Scholar 

  49. I.S. Grigoriev, E.Z. Meilikhov Handbook of Physical Quantities (CRC Press, Boca Raton, FL 1997)

    Google Scholar 

  50. R. Armstrong Models for gasless combustion in layered materials and random-media. Combust. Sci. Technol. 71, 155 (1990)

    CAS  Google Scholar 

  51. Y.N. Picard, J.P. McDonald, T.A. Friedmann, S.M. Yalisove, D.P. Adams Nanosecond laser induced ignition thresholds and reaction velocities of energetic bimetallic nanolaminates. Appl. Phys. Lett. 103, 104103 (2008)

    Google Scholar 

  52. J.P. McDonald, V.C. Hodges, E.D. Jones, D.P. Adams Direct observation of spinlike reaction fronts in planar energetic multilayer foils. Appl. Phys. Lett. 94, 034102 (2009)

    Google Scholar 

  53. A.K. Filonenko, V.I. Vershennikov Mechanism of spin burning of titanium in nitrogen. Combust. Explos. 11, 301 (1975)

    Google Scholar 

  54. S. Gennari, U. Anselmi-Tamburini, F. Maglia, G. Spinolo, Z.A. Munir Simulation study of wave propagation instabilities for the combustion synthesis of transition metals aluminides. J. Phys. Chem. B 110, 7144 (2006)

    CAS  Google Scholar 

  55. S. Gennari, U.A. Tamburini, F. Maglia, G. Spinolo, Z.A. Munir A new approach to the modeling of SHS reactions: Combustion synthesis of transition metal aluminides. Acta Mater. 54, 2343 (2006)

    CAS  Google Scholar 

  56. T.P. Ivleva, A.G. Merzhanov Three-dimensional modes of unsteady solid-flame combustion. Chaos: An Interdisciplinary Journal of Nonlinear Science 13, 80 (2003)

    CAS  Google Scholar 

  57. H.P. Li Banded structures in unstable combustion synthesis. J. Mater. Res. 10, 1379 (1995)

    CAS  Google Scholar 

  58. S. Zhang, Z.A. Munir Spin combustion in the nickel-silicon system. J. Mater. Sci. 27, 5789 (1992)

    CAS  Google Scholar 

  59. A.T. Aldred Intermediate phases involving scandium. Transactions of the Metallurgical Society of Aime 224, 1082 (1962)

    CAS  Google Scholar 

  60. E.J. Huber, E.L. Head, G.C. Fitzgibbon, C.E. Holley Heat of formation of scandium oxide. J. Phys. Chem. 67, 1731 (1963)

    CAS  Google Scholar 

  61. E.J. Huber, E.L. Head, C.E. Holley The heat of combustion of yttrium. J. Phys. Chem. 61, 497 (1957)

    CAS  Google Scholar 

  62. R. Jenkins, R.L. Snyder Introduction to X-ray Powder Diffraction (Wiley Interscience, New York 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joel P. McDonald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, J.P., Rodriguez, M.A., Jones, E.D. et al. Rare-earth transition-metal intermetallic compounds produced via self-propagating, high-temperature synthesis. Journal of Materials Research 25, 718–727 (2010). https://doi.org/10.1557/JMR.2010.0091

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2010.0091

Navigation