Skip to main content
Log in

Temperature dependence of mechanical properties in ultrathin Au films with and without passivation

Journal of Materials Research Aims and scope Submit manuscript

Abstract

Temperature and film thickness are expected to have an influence on the mechanical properties of thin films. However, mechanical testing of ultrathin metallic films at elevated temperatures is difficult, and few experiments have been conducted to date. Here, we present a systematic study of the mechanical properties of 80–500-nm-thick polycrystalline Au films with and without SiNx passivation layers in the temperature range from 123 to 473 K. The films were tested by a novel synchrotron-based tensile testing technique. Pure Au films showed strong temperature dependence above 373 K, which may be explained by diffusional creep. In contrast, passivated samples appeared to deform by thermally activated dislocation glide. The observed activation energies for both mechanisms are considerably lower than those for the bulk material, indicating that concomitant stress relaxation mechanisms are more pronounced in the thin film geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
TABLE I.
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
TABLE II.
FIG. 13

Similar content being viewed by others

References

  1. E. Arzt, G. Dehm, P. Gumbsch, O. Kraft D. Weiss: Interface controlled plasticity in metals: Dispersion hardening and thin film deformation. Prog. Mater. Sci. 46, 283 2001

    Article  CAS  Google Scholar 

  2. G. Dehm, T.J. Balk, B. von Blanckenhagen, P. Gumbsch E. Arzt: Dislocation dynamics in sub-micron confinement: Recent progress in Cu thin film plasticity. Z. Metallkd. 93, 383 2002

    Article  CAS  Google Scholar 

  3. W.D. Nix: Mechanical properties of thin films. Metall. Trans. A 20, 2217 1989

    Article  Google Scholar 

  4. C.V. Thompson: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 1993

    Article  Google Scholar 

  5. W.D. Nix: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545 1998

    Article  CAS  Google Scholar 

  6. B. von Blanckenhagen, P. Gumbsch E. Arzt: Dislocation sources in discrete dislocation simulations of thin-film plasticity and the Hall–Petch relation. Modell. Simul. Mater. Sci. Eng. 9, 157 2001

    Article  Google Scholar 

  7. P. Pant, K.W. Schwarz S.P. Baker: Dislocation interactions in thin fcc metal films. Acta Mater. 51, 3243 2003

    Article  CAS  Google Scholar 

  8. A. Needleman, L. Nicola, Y. Xiang, J.J. Vlassak E. Van der Giessen: Plastic deformation of freestanding thin films: Experiments and modeling. J. Mech. Phys. Solids 54, 2089 2006

    Article  Google Scholar 

  9. P.A. Gruber, J. Böhm, F. Onuseit, A. Wanner, R. Spolenak E. Arzt: Size effects on yield strength and strain hardening for ultrathin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater 56, 2318 2008

    Article  CAS  Google Scholar 

  10. G.B. Gibbs: Diffusion creep of a thin foil. Philos. Mag. 13, 589 1966

    Article  CAS  Google Scholar 

  11. H. Gao, L. Zhang, W.D. Nix, C.V. Thompson E. Arzt: Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater. 47, 2865 1999

    Article  CAS  Google Scholar 

  12. R.P. Vinci, E.M. Zielinski J.C. Bravman: Thermal strain and stress in copper thin films. Thin Solid Films 262, 142 1995

    Article  CAS  Google Scholar 

  13. R. Keller, S.P. Baker E. Arzt: Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. J. Mater. Res. 13, 1307 1998

    Article  CAS  Google Scholar 

  14. D. Weiss, H. Gao E. Arzt: Constrained diffusional creep in UHV-produced copper thin films. Acta Mater. 49, 2395 2001

    Article  CAS  Google Scholar 

  15. T.J. Balk, G. Dehm E. Arzt: Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films. Acta Mater. 51, 4471 2003

    Article  CAS  Google Scholar 

  16. L. Sauter: Microstructural and film thickness effects on the thermomechanical behavior of thin Au films. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany, 2006

    Google Scholar 

  17. M.J. Kobrinsky C.V. Thompson: Activation volume for inelastic deformation in polycrystalline Ag thin films. Acta Mater. 48, 625 2000

    Article  CAS  Google Scholar 

  18. M.J. Kobrinsky, G. Dehm, C.V. Thompson E. Arzt: Effects of thickness on the characteristic length scale of dislocation plasticity in Ag thin films. Acta Mater. 49, 3597 2001

    Article  CAS  Google Scholar 

  19. B.N. Lucas W.C. Oliver: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 1999

    Article  Google Scholar 

  20. F.R. Brotzen, C.T. Rosenmayer, C.G. Cofer R.J. Gale: Creep of thin metallic films. Vacuum 41, 1287 1990

    Article  Google Scholar 

  21. R. Emery, C. Simons, B. Mazin G.L. Povirk: High temperature tensile behavior of free-standing gold films in Thin-Films— Stresses and Mechanical Properties VII, edited by R.C. Cammarata, M. Nastasi, E.P. Busso, and W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998) pp. 57–62

  22. M.A. Haque M.T.A. Saif: Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484, 364 2005

    Article  CAS  Google Scholar 

  23. S. Hyun, W.L. Brown R.P. Vinci: Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl. Phys. Lett. 83, 4411 2003

    Article  CAS  Google Scholar 

  24. A.J. Kalkman, A.H. Verbruggen G. Janssen: High-temperature bulge-test setup for mechanical testing of free-standing thin films. Rev. Sci. Instrum. 74, 1383 2003

    Article  CAS  Google Scholar 

  25. M. Cieslar, V. Oliva, A. Karimi J.L. Martin: Plasticity of thin Al films as a function of temperature. Mater. Sci. Eng., A 387-389, 734 2004

    Google Scholar 

  26. J. Böhm, P. Gruber, R. Spolenak, A. Stierle, A. Wanner E. Arzt: Tensile testing of ultrathin polycrystalline films: A synchrotron-based technique. Rev. Sci. Instrum. 75, 1110 2004

    Article  CAS  Google Scholar 

  27. P. Gruber, J. Böhm, A. Wanner, L. Sauter, R. Spolenak E. Arzt: Size effect on crack formation in Cu/Ta and Ta/Cu/Ta thin film systems in Nanoscale Materials and Modeling–Relations Among Processing, Microstructure and Mechanical Properties, edited by P.M. Anderson, T. Foecke, A. Misra, and R.E. Rudd (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA, 2004), P2.7

  28. P.A. Gruber, E. Arzt R. Spolenak: Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. (submitted)

  29. J.L. Beuth Jr.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992

    Article  Google Scholar 

  30. Z.C. Xia J.W. Hutchinson: Crack patterns in thin films. J. Mech. Phys. Solids 48, 1107 2000

    Article  CAS  Google Scholar 

  31. T. Li, Z.Y. Huang, Z.C. Xi, S.P. Lacour, S. Wagner Z. Suo: Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 37, 261 2005

    Article  Google Scholar 

  32. Y. Xiang, T. Li, Z.G. Suo J.J. Vlassak: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 61910 2005

    Article  CAS  Google Scholar 

  33. H.J. Frost, M.F. Ashby Deormation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics Pergamon Press Oxford, UK 1982

    Google Scholar 

  34. P.A. Gruber, C. Solenthaler, E. Arzt R. Spolenak: Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, 1876 2008

    Article  CAS  Google Scholar 

  35. S.H. Oh, M. Legros, D. Kiener, P. Gruber G. Dehm: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 2007

    Article  CAS  Google Scholar 

  36. G. Dehm, D. Weiss E. Arzt: In situ transmission-electron-microscopy study of thermal-stress-induced dislocations in a thin Cu film constrained by a Si substrate. Mater. Sci. Eng., A 309-310, 468 2001

    Google Scholar 

  37. B. von Blanckenhagen, P. Gumbsch E. Arzt: Dislocation sources and the flow stress of polycrystalline thin metal films. Philos. Mag. Lett. 83, 1 2003

    Article  Google Scholar 

  38. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 2006

    Article  CAS  Google Scholar 

  39. M.D. Thouless: Effect of surface diffusion on the creep of thin films and sintered arrays of particles. Acta Metall. Mater. 41, 1057 1993

    Article  CAS  Google Scholar 

  40. M.J. Kobrinsky C.V. Thompson: The thickness dependence of the flow stress of capped and uncapped polycrystalline Ag thin films. Appl. Phys. Lett. 73, 2429 1998

    Article  CAS  Google Scholar 

  41. A. Gangulee F.M. Dheurle: Activation-energy for electromigration and grain-boundary self-diffusion in gold. Scr. Metall. 7, 1027 1973

    Article  CAS  Google Scholar 

  42. W. Gust, S. Mayer, A. Bogel B. Predel: Generalized representation of grain-boundary self-diffusion data. J. Phys. E 46, 537 1985

    Google Scholar 

  43. J. Horvath, R. Birringer H. Gleiter: Diffusion in nanocrystalline material. Solid State Commun. 62, 319 1987

    Article  CAS  Google Scholar 

  44. R. Birringer, H. Hahn, H. Hofler, J. Karch H. Gleiter: Diffusion and low temperature deformation by diffusional creep of nanocrystalline materials. Diffusion and defect data—Solid state data. Part A. Defect and Diffusion Forum 59, 17 1988

    Article  Google Scholar 

  45. R. Wurschum, S. Herth U. Brossmann: Diffusion in nanocrystalline metals and alloys—A status report. Adv. Eng. Mater. 5, 365 2003

    Article  CAS  Google Scholar 

  46. R. Raj M.F. Ashby: On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113 1971

    Article  Google Scholar 

Download references

Acknowledgments

The synchrotron experiments were carried out at the MPI-MF Surface Diffraction beamline at Angströmquelle Karlsruhe (ANKA) (Forschungszentrum Karlsruhe, Germany). We thank A. Stierle, R. Weigel, and N. Kasper for their excellent technical support. The sample chamber for the cooling experiments was built during the beamtime at the MPI-MF beamline and could not have been realized without the help from R. Weigel. We like to extend our special thanks to I. Lakemeyer and G. Richter of the MPI Thin Film Laboratory for the preparation of the thin films. We gratefully acknowledge H.D. Carstanjen and his team for giving us the opportunity to perform the RBS measurements at the MPI Pelletron Accelerator as well as B. Heiland, N. Sauer, S. Haag, and C. Solenthaler for their support in FIB and TEM work. We wish to thank J. Kienle and J.G. Schaller of the MPI Low Temperature Services for the advice and construction of parts of the cooling system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Spolenak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruber, P.A., Olliges, S., Arzt, E. et al. Temperature dependence of mechanical properties in ultrathin Au films with and without passivation. Journal of Materials Research 23, 2406–2419 (2008). https://doi.org/10.1557/jmr.2008.0292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2008.0292

Navigation