Skip to main content
Log in

In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High electric fields were delivered to specimens during imaging in the transmission electron microscopy (TEM) chamber to reveal details of electric field-induced phenomena in ferroelectric oxides. These include the polarization switching in nanometer-sized ferroelectric domains and the grain boundary cavitation in a commercial lead zirconate titanate (PZT) polycrystalline ceramic, the domain wall fracture in a Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal, and the transformation of incommensurate modulations in Pb0.99Nb0.02[(Zr1−xSnx)1−yTiy]0.98O3 (PZST100x/100y/2) polycrystalline ceramics. In the PZT ceramic, a cavitation process was uncovered for the electric field-induced intergranular fracture. In the ferroelectric single crystal, a preexisting crack was observed to deflect and to follow a 90° domain wall, indicating the presence of severe incompatible piezoelectric strains at the domain wall. In the antiferroelectric PZST ceramics, the electric field-induced antiferroelectric-to-ferroelectric phase transformation was accompanied with the disappearance of incommensurate modulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I.A. Blech and E.S. Meieran: Direct transmission electron microscope observation of electrotransport in aluminum thin films. Appl. Phys. Lett. 11, 263 (1967).

    CAS  Google Scholar 

  2. L. Berenbaum: Electromigration damage of grain-boundary triple points in Al thin films. J. Appl. Phys. 42, 880 (1971).

    Google Scholar 

  3. H. Okabayashi, M. Komatsu, and H. Mori: Depth-resolved in-situ TEM observation of electromigration in a submicron-wide layered Al–0.5% Cu line. Jpn. J. Appl. Phys. Part 1 35, 1102 (1996).

    CAS  Google Scholar 

  4. H. Okabayashi, H. Kitamura, M. Komatsu, and H. Mori: Behavior of electromigration-induced gaps in a layered Al line observed by in situ sideview transmission electron microscopy. Appl. Phys. Lett. 68, 1066 (1996).

    CAS  Google Scholar 

  5. H. Mori, H. Okabayashi, and M. Komatsu: Electromigration in layered Al lines studied by in-situ ultra-high voltage electron microscopy. Thin Solid Films 300, 25 (1997).

    CAS  Google Scholar 

  6. N. Yamamoto, K. Yagi, and G. Honjo: Electron microscopic studies of ferroelectric and ferroelastic Gd2(MoO4)3. Phys. Status Solidi A 62, 657 (1980).

    CAS  Google Scholar 

  7. E. Snoeck, L. Normand, A. Thorel, and C. Roucau: Electron microscopy study of ferroelastic and ferroelectric domain-wall motions induced by the in situ application of an electric field in BaTiO3. Phase Trans. 46, 77 (1994).

    CAS  Google Scholar 

  8. V. Saikumar, H.M. Chan, and M.P. Hamer: Investigation of ferroelectrics using conventional and in situ electron microscopy, in Proc. 52nd Annual Meeting of Microscopy Society of America, edited by G.W. Bailey and A.J. Garratt-Reed (San Francisco Press, San Francisco, CA, 1994), pp. 586–587.

    Google Scholar 

  9. X. Lin, C. Murray, and V.P. Dravid: Statics and dynamics of charged interfaces in electroceramics, in Microscopy and Microanalysis 1998, edited by G.W. Bailey, K.B. Alexander, W.G. Jerome, M.G. Bond, and J.J. McCarthy. (Springer, New York, 1998), pp. 552–553.

    Google Scholar 

  10. A. Krishnan, M.E. Bisher, and M.M.J. Treacy: In situ TEM study of domain propagation in ferroelectric barium titanate and its role in fatigue, in Ferroelectric Thin Films VII, edited by R.E. Jones, R.W. Schwartz, S.R. Summerfelt, and I.K. Yoo (Mater. Res. Soc. Symp. Proc. 541, Warrendale, PA, 1999), p. 475.

    CAS  Google Scholar 

  11. C.A. Randall, D.J. Barber, and R.W. Whatmore: In situ TEM experiments on perovskite-structured ferroelectric relaxor materials. J. Microsc. 145, 275 (1987).

    CAS  Google Scholar 

  12. Z.L. Wang and Z.C. Kang: Functional and Smart Materials: Structural Evolution and Structure Analysis (Plenum Press, New York, 1998), p. 396.

    Google Scholar 

  13. K.D. Johnson and V.P. Dravid: Grain boundary barrier breakdown in niobium donor doped strontium titanate using in situ electron holography. Appl. Phys. Lett. 74, 621 (1999).

    CAS  Google Scholar 

  14. X. Tan, T. Du, and J.K. Shang: Piezoelectric-actuated in situ transmission electron-microscopy technique for fatigue failure study on constrained metal thin films. Appl. Phys. Lett. 80, 3946 (2002).

    CAS  Google Scholar 

  15. X. Tan and J.K. Shang: In-situ TEM observations of electric field induced domain switching and microcracking in ferroelectric ceramics. Mater. Sci. Eng. A314, 157 (2001).

    CAS  Google Scholar 

  16. Z. Xu, X. Tan, P. Han, and J.K. Shang: In situ TEM study of electric-field-induced microcracking in single crystal 0.66Pb(Mg1/3Nb2/3)O3–0.34PbTiO3. Appl. Phys. Lett. 76, 3732 (2000).

    CAS  Google Scholar 

  17. X. Tan, Z. Xu, J.K. Shang, and P. Han: Direct observations of electric field-induced domain boundary cracking in 〈001〉 oriented piezoelectric Pb(Mg1/3Nb2/3)O3−PbTiO3 single crystal. Appl. Phys. Lett. 77, 1529 (2000).

    CAS  Google Scholar 

  18. X. Tan and J.K. Shang: In-situ transmission-electron-microscopy study of electric field-induced grain boundary cracking in lead zirconate titanate. Philos. Mag. A 82, 1463 (2002).

    CAS  Google Scholar 

  19. H. He, and X. Tan: In situ transmission-electron-microscopy study of the electric field-induced transformation of incommensurate modulations in a Sn-modified lead zirconate titanate ceramic. Appl. Phys. Lett. 85, 3187 (2004).

    CAS  Google Scholar 

  20. M.E. Lines and A.M. Glass: Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, U.K., 1977).

    Google Scholar 

  21. W. Pan, Q. Zhang, A. Bhalla, and L.E. Cross: Field-forced antiferroelectric-to-ferroelectric switching in modified lead zirconate titanate stannate ceramics. J. Am. Ceram. Soc. 72, 571 (1989).

    CAS  Google Scholar 

  22. P. Yang and D.A. Payne: Thermal stability of field-forced and field-assisted antiferroelectric-ferroelectric phase transformation in Pb(Zr,Sn,Ti)O3. J. Appl. Phys. 71, 1361 (1992).

    CAS  Google Scholar 

  23. S.E. Park and T.R. Shrout: Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804 (1997).

    CAS  Google Scholar 

  24. S. Wada, S. Suzuki, T. Noma, T. Suzuki, M. Osada, M. Kakihana, S.E. Park, L.E. Cross, and T.R. Shrout: Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn. J. Appl. Phys. 38, 5505 (1999).

    CAS  Google Scholar 

  25. Z.G. Ye: Relaxor ferroelectric complex perovskites: Structure, properties, and phase transitions. Key Eng. Mater. 155-156, 81 (1998).

    Google Scholar 

  26. H. Cao and A.G. Evans: Electric-field-induced fatigue crack growth in piezoelectrics. J. Am. Ceram. Soc. 77, 1783 (1994).

    CAS  Google Scholar 

  27. J.K. Shang, and X. Tan: A maximum strain criterion for electricfield- induced fatigue-crack propagation in ferroelectric ceramics. Mater. Sci. Eng. A301, 131 (2001).

    CAS  Google Scholar 

  28. G.S. White, A.S. Raynes, M.D. Vaudin, and S.W. Freiman: Fracture behavior of cyclically loaded PZT. J. Am. Ceram. Soc. 77, 2603 (1994).

    CAS  Google Scholar 

  29. C.S. Lynch, W. Yang, L. Collier, Z. Suo, and R.M. McMeeking: Electric field induced cracking in ferroelectric ceramics. Ferroelectrics 166, 11 (1995).

    CAS  Google Scholar 

  30. R.M. McMeeking: Electrostrictive stresses near crack-like flaw. J. Appl. Math. Phys. 40, 615 (1989). ZAMP.

    Google Scholar 

  31. Z. Suo: Mechanics concepts for failure in ferroelectric ceramics, in Smart Structures and Materials, edited by G.K. Haritos and A.V. Srinivasan (ASME, New York, 1991), AD Vol. 24/AMD Vol. 123, p.1.

    Google Scholar 

  32. E.K. Beauchamp: Effect of microstructure on pulse electric strength of MgO. J. Am. Ceram. Soc. 54, 484 (1971).

    CAS  Google Scholar 

  33. H.C. Ling and D.D. Chang: In situ observation of electrode melting in multilayer ceramic capacitors. J. Mater. Sci. 24, 4128 (1989).

    CAS  Google Scholar 

  34. H. Kanai, O. Furukawa, S. Nakamura, and Y. Yamashita: Effect of stoichiometry on the dielectric properties and life performance of (Pb0.875Ba0.125)[(Mg1/3Nb2/3)0.5(Zn1/3Nb2/3)0.3Ti0.2]O3 relaxor dielectric ceramic: Part II, life performance. J. Am. Ceram. Soc. 76, 459 (1993).

    CAS  Google Scholar 

  35. C.K. Campbell, J.D. van Wyk, and R. Chen: Experimental and theoretical characterization of an antiferroelectric ceramic capacitor for power electronics. IEEE Trans. Comp. Pack. Technol. 25, 211 (2002).

    Google Scholar 

  36. Y. Chang, J. Lian, and Y. Wang: One-dimensional regular arrays of antiphase domain boundaries in antiferroelectric tin-substituted lead zirconate titanate ceramics. Appl. Phys. A 36, 221 (1985).

    Google Scholar 

  37. J.S. Speck, M. De Graef, A.P. Wilkinson, A.K. Cheetham, and D.R. Clarke: Hierarchical domain structures and in situ domain migration in the antiferroelectric ceramic PLSnZT. J. Appl. Phys. 73, 7261 (1993).

    CAS  Google Scholar 

  38. Z. Xu, D. Viehland, and D.A. Payne: An incommensuratecommensurate phase transformation in antiferroelectric tinmodified lead zirconate titanate. J. Mater. Res. 10, 453 (1995).

    CAS  Google Scholar 

  39. D. Viehland, X.H. Dai, J.F. Li, and Z. Xu: Effects of quenched disorder on La-modified lead zirconate titanate: Long- and shortrange ordered structurally incommensurate phases, and glassy polar clusters. J. Appl. Phys. 84, 458 (1998).

    CAS  Google Scholar 

  40. J. Knudsen, D.I. Woodward, and I. Reaney: Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1−1.5xLax(Zr0.9Ti0.1)O3. J. Mater. Res. 18, 262 (2003).

    CAS  Google Scholar 

  41. D. Viehland, Z. Xu, and D.A. Payne: Origin of F spots and stress sensitivity in lanthanum lead zirconate titanate. J. Appl. Phys. 74, 7454 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., He, H. & Shang, JK. In situ transmission electron microscopy studies of electric-field-induced phenomena in ferroelectrics. Journal of Materials Research 20, 1641–1653 (2005). https://doi.org/10.1557/JMR.2005.0213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0213

Navigation