Skip to main content
Log in

Effect of oxygen on the thermomechanical behavior of passivated Cu thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The thermomechanical behavior of Cu thin films, 600–1125 nm thick and encapsulated between SiNx barrier and SiNx or AlNx passivation layers on silicon substrates, was studied during thermal cycling between room temperature and 400 or 500 °C using the substrate curvature method. Films were prepared with varying oxygen contents, and the distribution of oxygen through the thickness of selected films was studied before and after thermal cycling using secondary ion mass spectrometry. Large variations in the thermomechanical behavior with oxygen content were found and correlated with segregation of oxygen to the film/barrier and film/passivation interfaces. These variations are thought to be due to recovery of stored misfit dislocation energy, which is, in turn, controlled by oxygen in the film. Effects of oxygen on film deformation through variations in interfacial adhesion and diffusion-induced dislocation glide are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.D. Nix, Metall. Trans. A 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  2. P.A. Flinn, D.S. Gardner, and W.D. Nix, IEEE Trans. Electron Devices ED-34(3), 689 (1987).

    Article  Google Scholar 

  3. B.M. Clemens and J.A. Bain, MRS Bull. XVII(7), 46 (1992).

    Article  Google Scholar 

  4. P.A. Flinn, J. Mater. Res. 6, 1498 (1991).

    Article  CAS  Google Scholar 

  5. M.D. Thouless, J. Gupta, and J.M.E. Harper, J. Mater. Res. 8, 1845 (1993).

    Article  CAS  Google Scholar 

  6. R.P. Vinci, E.M. Zielinski, and J.C. Bravman, Thin Solid Films 262, 142 (1995).

    Article  CAS  Google Scholar 

  7. S.P. Baker, R-M. Keller, A. Kretschmann, and E. Arzt, in Materials Reliability in Microelectronics VIII, edited by T. Marieb, J. Bravman, M.A. Korhonen, and J.R. Lloyd (Mater. Res. Soc. Symp. Proc., Warrendale, PA, 1998), p. 287.

  8. R-M. Keller, S.P. Baker, and E. Arzt, J. Mater. Res. 13, 1307 (1998).

    Article  CAS  Google Scholar 

  9. Y-L. Shen, S. Suresh, M.Y. He, A. Bagchi, O. Kienzle, M. Rühle, and A.G. Evans, J. Mater. Res. 13, 1928 (1998).

    Article  CAS  Google Scholar 

  10. S.P. Baker, A. Kretschmann, and E. Arzt, Acta Mater. 49, 2145 (2001).

    Article  CAS  Google Scholar 

  11. D. Weiss, H. Gao, and E. Arzt, Acta Mater. 49, 2395 (2001).

    Article  CAS  Google Scholar 

  12. R.P. Vinci, S.A. Forrest, and J.C. Bravman, J. Mater. Res. 17, 1863 (2002).

    Article  CAS  Google Scholar 

  13. S.P. Baker, R-M. Keller-Flaig, and J.B. Shu, Acta Mater. 51, 3019 (2003).

    Article  CAS  Google Scholar 

  14. S.P. Baker, R-M. Keller, and E. Arzt, in the Thin Films: Stresses and Mechanical Properties VII, edited by R.C. Cammarata, E.P. Busso, M. Nastasi, and W.C. Oliver (Mater. Res. Soc. Symp. Proc., Warrendale PA, 1998), p. 605.

  15. C.A. Volkert, C.F. Alofs, and J. R. Liefting, J. Mater. Res. 9, 1147 (1994).

    Article  CAS  Google Scholar 

  16. F.C. Frank and J.H. van der Merwe, Proc. R. Soc. A 198, 216 (1949).

    CAS  Google Scholar 

  17. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  18. W.D. Nix, Scripta Mater. 39, 545 (1998).

    Article  CAS  Google Scholar 

  19. L.B. Freund, J. Appl. Mech 54, 553 (1987).

    Article  CAS  Google Scholar 

  20. K. Saha, J.B. Shu, and S.P. Baker (unpublished, 2003).

  21. P.G. Shewmon, G. Meyrick, S. Mishra, and T.A. Parthasarathy, Scripta Metall. 17, 1231 (1983).

    Article  CAS  Google Scholar 

  22. R. Kirchheim, Acta Metall. 27, 869 (1979).

    Article  CAS  Google Scholar 

  23. J.B. Shu, Ph.D. Dissertation, Cornell University, Ithaca, NY (2003).

  24. A.J. Purdes, B.F.T. Bolker, J.D. Bucci, and T.C. Tisone, J. Vac. Sci. Technol. 14, 98 (1977).

    Article  CAS  Google Scholar 

  25. D.N. Popov and P.I. Docheva, Vacuum 42, 53 (1991).

    Article  CAS  Google Scholar 

  26. A. Parretta, M.K. Jayaraj, A. Di Nocera, S. Loreti, L. Quercia, and A. Agati, Phys. Status Solidi A 155, 399 (1996).

    Article  CAS  Google Scholar 

  27. C. Benndorf, B. Egert, G. Keller, H. Seidel, and F. Thieme, J. Vac. Sci. Technol. 15, 1806 (1978).

    Article  CAS  Google Scholar 

  28. M. Backhaus-Ricoult, Philos. Mag. A 81, 1759 (2001).

    Article  CAS  Google Scholar 

  29. M. Backhaus-Ricoult, L. Samet, M. Thomas, M.-F. Trichet, and D. Imhoff, Acta Mater. 50, 4191 (2002).

    Article  CAS  Google Scholar 

  30. S.P. Baker, Y-C. Joo, M.P. Knauss, and E. Arzt, Acta Mater. 48, 2199 (2000).

    Article  CAS  Google Scholar 

  31. J. Kasthurirangan, T. Du, P. Ho, C. Capasso, M. Gall, D. Jawarani, R. Hernandez, and H. Kawasaki, in the Proceedings of the Fifth International Workshop on Stress Induced Phenomena in Metallization, edited by O. Kraft, E. Arzt, C.A. Volkert, P.S. Ho, and H. Okabayashi (American Institute of Physics, Melville, NY, 1999), p. 304.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shu, J.B., Clyburn, S.B., Mates, T.E. et al. Effect of oxygen on the thermomechanical behavior of passivated Cu thin films. Journal of Materials Research 18, 2122–2134 (2003). https://doi.org/10.1557/JMR.2003.0298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0298

Navigation