Skip to main content
Log in

Semi-inverse method for predicting stress–strain relationship from cone indentations

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method for determining the stress–strain relationship of a material from hardness values H obtained from cone indentation tests with various apical angles is presented. The materials studied were assumed to exhibit power-law hardening. As a result, the properties of importance are the Young’s modulus E, yield strength Y, and the work-hardening exponent n. Previous work [W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992)] showed that E can be determined from initial force–displacement data collected while unloading the indenter from the material. Consequently, the properties that need to be determined are Y and n. Dimensional analysis was used to generalize H/E so that it was a function of Y/E and n [Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999); Philos. Mag. Lett. 77, 39 (1998)]. A parametric study of Y/E and n was conducted using the finite element method to model material behavior. Regression analysis was used to correlate the H/E findings from the simulations to Y/E and n. With the a priori knowledge of E, this correlation was used to estimate Y and n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ludwik, Die Kegelprobe (Springer, Berlin, Germany 1908).

    Book  Google Scholar 

  2. I.N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  3. M.F. Doerner and W.D. Nix, J. Mater. Res. 1, 601 (1986)

    Article  Google Scholar 

  4. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  5. D. Tabor, Philos. Mag. A 74, 1207 (1996).

    Article  CAS  Google Scholar 

  6. K.A. Bhattacharya and W.D. Nix, Int. J. Solids Struct. 24, 881 (1988).

    Article  Google Scholar 

  7. Y-T. Cheng and C-M. Cheng, J. Mater. Res. 14, 3493 (1999).

    Article  CAS  Google Scholar 

  8. A.G. Atkins and D. Tabor, J. Mech. Phys. Solids 13, 149 (1965).

    Article  Google Scholar 

  9. R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, U.K., 1950).

    Google Scholar 

  10. F.J. Lockett, J. Mech. Phys. Solids 11, 345 (1963).

    Article  Google Scholar 

  11. K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1969).

    Article  Google Scholar 

  12. J.O. Rawlings, S.G. Pantula, and D.A. Dickey, Applied Regression Analysis: A Research Tool (Springer, New York, 1998).

    Book  Google Scholar 

  13. B.R. Munson, D.F. Young, and T.H. Okiishi, Fundamentals of Fluid Mechanics (John Wiley & Sons, New York, 1994).

    Google Scholar 

  14. Y-T. Cheng and C-M. Cheng, J. Appl. Phys. 84, 1284 (1999).

    Article  Google Scholar 

  15. Y-T. Cheng and C-M. Cheng, Philos. Mag. Lett. 77, 39 (1998).

    Article  CAS  Google Scholar 

  16. G.E. Dieter, Materials Science and Engineering Series: Mechanical Metallurgy (McGraw-Hill, New York, 1976).

    Google Scholar 

  17. ABAQUS, version 5.8 (Hibbitt, Karlsson & Sorensen, Pawtucket, RI, 1996).

  18. J. Callahan and K. Hoffman, Calculus in Context: Five College Calculus Project (Freeman, New York, 1995).

    Google Scholar 

  19. V. Krishnamurthy, Master Thesis, Purdue University, West Lafayette, IN (2001).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiCarlo, A., Yang, H.T.Y. & Chandrasekar, S. Semi-inverse method for predicting stress–strain relationship from cone indentations. Journal of Materials Research 18, 2068–2078 (2003). https://doi.org/10.1557/JMR.2003.0291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0291

Navigation