Skip to main content
Log in

Ultrafine-grained microstructure in a Cu–Zn alloy produced by electropulsing treatment

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

High-current-density electropulsing was applied to a coarse-grained Cu–Zn alloy with two phases of α-phase and β′-phase. It was found that with an electropulsing treatment, ultrafine-grained (UFG) microstructure could be formed in the α-phase, but could not be formed in the β-phase. The results indicated that the formation of UFG microstructure was dependent on solid-state phase transformation. The main reason for the formation of UFG microstructure by electropulsing treatment resulted from the effect of a decrease in thermodynamic barrier and enhancement of nucleation rate in a current-carrying system, but not from the high heating and cooling rate during electropulsing treatment. The bulk UFG samples prepared by electropulsing treatment were free of porosity and contamination and had no large microstrain. It was reasonable to anticipate that a new method might be developed to produce ideal bulk UFG samples directly from the conventional coarse-grained materials by application of electropulsing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.S. Ho and T. Kwok, Rep. Prog. Phys. 52, 301 (1989).

    Article  CAS  Google Scholar 

  2. H. Conrad and A.F. Sprecher, in Dislocations in Solids, edited by F.R.N. Nabarro (Elsevier Science Publishers, Amsterdam, The Netherlands, 1989), p. 497.

  3. A.K. Misra, Metall. Trans. A 16, 1354 (1985).

    Article  Google Scholar 

  4. H. Mizubayashi and S. Okuda, Phys. Rev. B 40, 8057 (1989).

    Article  CAS  Google Scholar 

  5. Z.H. Lai, H. Conrad, G.Q. Teng, and Y S. Chao, Mater. Sci. Eng. A 287, 238 (2000).

    Article  Google Scholar 

  6. Y.Z. Zhou, Y. Zeng, G.H. He, and B. L. Zhou, J. Mater. Res. 16, 17 (2001).

    Article  CAS  Google Scholar 

  7. Y.Z. Zhou, R.S. Qin, S.H. Xiao, G.H. He, and B.L. Zhou, J. Mater. Res. 15, 1056 (2000).

    Article  CAS  Google Scholar 

  8. H. Conrad, A.F. Sprecher, W.D. Cao, and X.P. Lu, in Homogenization and Annealing of Al and Cu Alloys, edited by H. Merchant, J. Crane, and E. Chia (TMS, Warrendale, PA, 1990), p. 227.

  9. Z.S. Xu, Z.H. Lai, and Y.X. Chen, Scripta Metall. 22, 182 (1988).

    Article  Google Scholar 

  10. H. Gleiter, Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  11. K. Lu, Mater. Sci. Eng. R 16, 161 (1996).

    Article  Google Scholar 

  12. C.C. Koch, Nanostructured Mater. 2, 109 (1993).

    Article  CAS  Google Scholar 

  13. H. Bakker, G.F. Zhou, and H. Yang, Prog. Mater. Sci. 39, 159 (1995).

    Article  CAS  Google Scholar 

  14. U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust, Nanostructured Mater. 2, 383 (1993).

    Article  CAS  Google Scholar 

  15. R.Z. Valiev, A.V. Korznikor, and R.R. Mulyukov, Mater. Sci. Eng. A 168, 141 (1993).

    Article  Google Scholar 

  16. L. Lu, M.L. Sui, and K. Lu, Science 287, 1463 (2000).

    Article  CAS  Google Scholar 

  17. Y.Z. Zhou, J.D. Guo, W. Zhang, and G.H. He, J. Mater. Res. 17, 3012 (2002).

    Article  CAS  Google Scholar 

  18. Y.Z. Zhou, W. Zhang, B.Q. Wang, G.H. He, and J.D. Guo, J. Mater. Res. 17, 2105 (2002).

    Article  CAS  Google Scholar 

  19. Y.Z. Zhou, W. Zhang, M.L. Sui, D.X. Li, G.H. He, and J.D. Guo, J. Mater. Res. 17, 921 (2002).

    Article  CAS  Google Scholar 

  20. Binary Alloy Phase Diagrams, 2nd ed., edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak (ASM International, Metals Park, OH, 1990), p. 1508.

  21. Y. Dolinsky and T. Elperin, J. Appl. Phys. 73, 5283 (1993).

    Article  CAS  Google Scholar 

  22. Y. Dolinsky and T. Elperin, Phys. Rev. B 47, 14778 (1993).

    Article  CAS  Google Scholar 

  23. Y. Dolinsky and T. Elperin, Phys. Rev. B 50, 52 (1994).

    Article  CAS  Google Scholar 

  24. R.S. Qin and B.L. Zhou, Int. J. Non-Equilib. Proc. 11, 77 (1998).

    CAS  Google Scholar 

  25. R.S. Qin and B.L. Zhou, Chin. J. Mater. Res. 11, 69 (1997).

    CAS  Google Scholar 

  26. Y. Dolinsky and T. Elperin, Mater. Sci. Eng. A 287, 219 (2000).

    Article  Google Scholar 

  27. P.S. Xiang, Worked Handbook of Heavy Nonferrous Alloys (Metallurgy Industry Publisher, Beijing, China, 1979), p. 59.

    Google Scholar 

  28. D.A. Porter and K.E. Easterling, Phase Transformation in Metals and Alloys (Van Nostrand Reinhold, Berkshire, U.K., 1984) pp. 186–260.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhang, W., Wang, B. et al. Ultrafine-grained microstructure in a Cu–Zn alloy produced by electropulsing treatment. Journal of Materials Research 18, 1991–1997 (2003). https://doi.org/10.1557/JMR.2003.0276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2003.0276

Navigation