Skip to main content
Log in

Surface effects in field-assisted sintering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The more-stringent requirements for densification of new out-of-equilibrium powders have created a growing demand for nonconventional rapid sintering processes. Among those, field-assisted sintering techniques (FASTs) have seen a recent renewed interest motivated by their ability to consolidate a large variety of powder materials into high densities in short times. Characterization of a range of FAST-consolidated materials displayed relevant associated surface effects, such as grain boundary cleaning with direct grain-to-grain contact and advanced densification without sintering aids. These effects may be attributed to phenomena ranging from dielectric breakdown to a possible nonconventional plasma generation. Such surface effects provided a better intergranular bonding of powder particles during subsequent sintering

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z.A. Munir and H. Schmalzried, J. Mater. Synth. Process. 1, 3 (1993).

    CAS  Google Scholar 

  2. H. Conrad, A.F. Sprecher, W.D. Cao, and X.P. Lu, J. of Materials 42, 28 (1990).

    CAS  Google Scholar 

  3. D. Kashchiev, J. Crys. Growth, 13/14, 128 (1972).

    Article  Google Scholar 

  4. J.R. Groza, Field Activated Sintering, Metals Handbook, Powder Metal Technologies and Applications, Vol. 7 (ASM International, Metals Park, OH, 1998), pp. 583–589.

  5. S. Yoo, J.R. Groza, T.S. Sudarshan, and K. Yamazaki, J. of Materials, Poroshk. Metall., Scripta Materialia 34, 1383–1386 (1996).

    CAS  Google Scholar 

  6. A. Feng and Z.A. Munir, Metall. Mater. B Trans. 26B, 581 (1995).

    Article  CAS  Google Scholar 

  7. J.R. Groza, J.D. Curtis, and M. Krämer, J. Am. Ceram. Soc., 83, 1281 (2000).

    Article  CAS  Google Scholar 

  8. T.J. Goodwin, S.H. Yoo, P. Matteazzi, and J.R. Groza, Nanostructr. Mater. 8, 559 (1997).

    Article  CAS  Google Scholar 

  9. G.F. Taylor, U.S. Patent No. 1,896, 854 (1933).

  10. F.V. Lenel, J. of Materials 7, 158 (1955).

    CAS  Google Scholar 

  11. K. Okazaki, Rev. Particulate Mater. 2, 215 (1994).

    CAS  Google Scholar 

  12. A.I. Raichenko, M.Z. Kolchinskii, and D.A. Levina, Proshk. Metall., 166, 19 (1976).

    Google Scholar 

  13. G.S. Choi, J.Y. Kim, and D.H. Lee, J. Korean Inst. Met. Mater. 30, 840 (1992).

    CAS  Google Scholar 

  14. J.R. Groza and S.H. Risbud, J. Mater. Res. 7, 2643 (1992).

    Article  CAS  Google Scholar 

  15. H. Kimura, J. Phys. (Paris) 1–3, 423 (1993).

    Google Scholar 

  16. A.S. Helle, K.E. Easterling, and M.F. Asby, Acta Metall. 33, 2163 (1985).

    Article  CAS  Google Scholar 

  17. M.F. Ashby, Acta Metall. 22, 275 (1974).

    Article  CAS  Google Scholar 

  18. A.I. Raichenko, E.S. Chernova, and E.A. Olevski, J. Phys. IV, Coll. C 7 3, 1235 (1993).

    Google Scholar 

  19. S.M. Knittel and S.H. Risbud, in Microwave Plasma Densification of Aluminum Nitride, edited by Z.A. Munir and J.B. Holt (VCH Publishers, New York, 1990), p. 414.

    Google Scholar 

  20. N. Kuramoto, H. Taniguchi and I. Aso, Ceram Bull. 68, 883 (1989).

    CAS  Google Scholar 

  21. M. Yokogawa, K. Yamazaki, S.H. Risbud, J.R. Groza, H. Aoyama, and K. Shoda, in Advancement of Intelligent Production, edited by E. Usui (Elsevier Science and The Japan Society for Precision Engineering, Japan, 1994) p. 582.

    Book  Google Scholar 

  22. S.H. Risbud, J.R. Groza, and M.J. Kim, Philos. Mag. 69, 525 (1994).

    Article  CAS  Google Scholar 

  23. J.J. O’Dwyer, The Theory of Breakdown in Dielectrics (Oxford, Clarendon Press, 1964).

    Google Scholar 

  24. D. Kim, H.R. Pak, and K. Okazaki, Mater. Sci. Eng. A 104, 191 (1988).

    Article  Google Scholar 

  25. A. Zavaliangos, Drexel University (personal communication, 1999).

  26. P. Luo, T.G. Nieh, A.J. Schwartz, and T.J. Lenk, Mater. Sci. Eng., A 204, 59 (1995).

    Article  Google Scholar 

  27. J.H. Harris, J. of Materials 50 (6), 56 (1998).

    CAS  Google Scholar 

  28. B. Eliasson and U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063 (1991).

    Article  CAS  Google Scholar 

  29. F. Llewellyn-Jones, in Electrical Breakdown and Discharges in Gases, Part A: Fundamental Processes and Breakdown, edited by E.E. Kunhardt and L.H. Luessen (Plenum Press, New York, 1983), pp. 1–71.

    Book  Google Scholar 

  30. C.D. Hendricks in Electrostatics and Its Applications, edited by A.D. Moore (John Wiley, New York, 1973), p. 60.

    Google Scholar 

  31. R.S. Mishra, A.K. Mukherjee, K. Yamazaki, and K. Shoda, J. Mater. Res, 11, 1144 (1968).

    Article  Google Scholar 

  32. J.A. Schneider, R.S. Mishra, and A.K. Mukherjee, in Advanced Synthesis and Processing of Composites and Advanced Ceramics II, edited by R. Spriggs, Z. Munir, and K. Logan (American Ceramic Society, Westerville, OH, 1996), Vol. 79, p. 143.

    Google Scholar 

  33. R.S. Mishra, S.H. Risbud, and A.K. Mukherjee, J. Mater. Res. 13, 86 (1998).

    Article  CAS  Google Scholar 

  34. E.L. Kemer and D.L. Johnson, Am. Ceram. Bull. 64, 1132 (1985).

    CAS  Google Scholar 

  35. K.P. Thiessen, J. Chim. Phys. 83, 717 (1986).

    Article  Google Scholar 

  36. G.L. Burenkov, V.T. Bodnar, N.A. Krylova, and A.I. Raichenko, Poroshk. Metall. 294 (6) 35 (1987).

    Google Scholar 

  37. R. Dowding, ARL, (personal communication, 1998).

  38. H. Kimura, Nanostruct. Mater. 9, 93 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groza, J.R., Garcia, M. & Schneider, J.A. Surface effects in field-assisted sintering. Journal of Materials Research 16, 286–292 (2001). https://doi.org/10.1557/JMR.2001.0043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2001.0043

Navigation