Skip to main content
Log in

Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Variations of the properties of submicron vapor-grown carbon fibers (VGCFs) and nanofibers, with diameters around 0.1–0.2 μm and 80–100 nm, respectively, are observed by Raman spectroscopy as a function of heat-treatment temperature. The microstructural evolution strongly depends on the original properties of the material, such that the main transition temperatures associated with the onset for establishing two-dimensional graphene ordering are defined below 1500 °C for the nanofibers and 2000 °C for the submicron VGCFs, respectively. The relative intensities (I D/I G) of the as-grown phase for submicron VGCFs and nanofibers are 3.44 and 1.35, while those for the corresponding graphitized samples are 0.393 and 0.497, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Endo, T. Koyama, and Y. Hishiyama, Jpn. J. Phys. 15, 2073 (1976).

    Article  CAS  Google Scholar 

  2. M. Endo, Chemtech 8, 568 (1988).

    Google Scholar 

  3. R.T.K. Baker and P.S. Harris, Chemistry and Physics of Carbon, edited by P.L. Walker, Jr. (Marcel Dekker, New York, 1978), Vol. 14, p. 83.

    Google Scholar 

  4. A. Sacco, Jr., P. Thacker, T.N. Chang, A.T.S. Lee, and R. Gately, J. Catal. 119, 322 (1989).

    Article  CAS  Google Scholar 

  5. R.T. Baker, P.S. Harris, R.B. Thomas, and R.J. Waite, J. Catal. 30, 86 (1973).

    Article  CAS  Google Scholar 

  6. G.G. Tibbetts, M. Endo, and C.P. Beetz, Jr., SAMPE J. 30 (1986).

  7. M. Endo, NATO Conf. (1998).

  8. A. Oberlin, M. Endo, and T. Koyama, J. Cryst. Growth 32, 335 (1976).

    Article  CAS  Google Scholar 

  9. M. Endo, K. Takeuchi, and M.S. Dresselhaus, J. Phys. Chem. Solids 58, 1707 (1997).

    Article  CAS  Google Scholar 

  10. F. Tuinstra and J.L. Koenig, J. Chem. Phys. 53, 1126 (1970).

    Article  CAS  Google Scholar 

  11. T.C. Chieu, M.S. Dresselhaus, and M. Endo, Phys. Rev. B26, 5867 (1982).

    Article  Google Scholar 

  12. M.S. Dresslhaus and G. Dresslhaus, Light Scattering in Solid III, Topics in Applied Physics Vol. 51, edited by M. Cardona and G. Guntherodt (Springer, Berlin, Heidelberg, 1982), p. 3.

    Google Scholar 

  13. P. Lespade, R. Al-Jishi, and M.S. Dresselhaus, Carbon 20, 427 (1982).

    Article  CAS  Google Scholar 

  14. D.S. Knight and W.B. White, J. Mater. Res. 4, 385 (1989).

    Article  CAS  Google Scholar 

  15. R.J. Nemanich and S.A. Solin, Phys. Rev. B20, 392 (1979).

    Article  Google Scholar 

  16. I. Pocsik, M. Hundhauser, M. Koos, and L. Ley, J. Non-Cryst. Solids 227–230, 1083 (1998).

    Article  Google Scholar 

  17. M.S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, New York, 1996), p. 761.

    Google Scholar 

  18. M. Endo, R. Saito, M.S. Dresselhaus, and G. Dresselhaus, In Carbon Nanotubes, edited by W. Ebbesen (CRC, New York, 1997), Chap. 2, p. 35.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endo, M., Nishimura, K., Kim, Y.A. et al. Raman spectroscopic characterization of submicron vapor-grown carbon fibers and carbon nanofibers obtained by pyrolyzing hydrocarbons. Journal of Materials Research 14, 4474–4477 (1999). https://doi.org/10.1557/JMR.1999.0607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0607

Navigation