Skip to main content
Log in

Stress-driven surface evolution in heteroepitaxial thin films: Anisotropy of the two-dimensional roughening mode

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have analyzed the anisotropic behavior of surface roughening in Si1−xGex/Si(001) heterostructures by use of methods of elastic analysis of undulated surfaces and perturbation analysis on the basis of global energy variations associated with surface evolution. Both methods have shown that the two-dimensional stage of surface roughening preferentially takes place in the form of ridges aligned along the two orthogonal <100> type directions. This prediction has been confirmed by ex situ experimental observations of surface evolution by use of atomic force microscopy and transmission electron microscopy in both subcritically and supercritically thick Si1−xGex films grown on Si(001) substrates. Further experiments in supercritically thick films have revealed a remarkable interplay between defect formation and surface evolution: the formation of a network of <110> misfit dislocations in the latter stages alters the evolution process by rotating the ridge formations toward the <110> type directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. People, Phys. Rev. B 32, 1405 (1985).

    Article  CAS  Google Scholar 

  2. T.P. Pearsall, J. Lumines. 44, 367 (1989).

    Article  CAS  Google Scholar 

  3. J.D. Cressler, IEEE Spect. March, 49 (1995).

    Article  Google Scholar 

  4. R. People, IEEE J. Quant. Electron. 22, 1696 (1996).

    Article  Google Scholar 

  5. D.L. Harame, J.H. Comfort, J.D. Cressler, E.F. Crabbe, J.Y. Sun, B.S. Meyerson, and T. Tice, IEEE Trans. Electron Devices (Parts I and II) 42, 455 (1995).

    Article  CAS  Google Scholar 

  6. S.S. Iyer, G.L. Patton, J.M.C. Stork, B.S. Meyerson, and D.L. Harame, IEEE Trans. Electron Devices 36, 2043 (1989).

    Article  CAS  Google Scholar 

  7. H.C. Liu, D. Landheer, M. Buchanan, and D.C. Houghton, Appl. Phys. Lett. 52, 1809 (1988).

    Article  CAS  Google Scholar 

  8. R.S. Geels, S.W. Corzine, and L.A. Coldren, J. Quant. Electron. 27, 1359 (1991).

    Article  CAS  Google Scholar 

  9. J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    CAS  Google Scholar 

  10. J.W. Matthews, Epitaxial Growth, Part B, Chapter 8 (1975).

  11. W.D. Nix, Metall Trans. 20A, 2217 (1989).

    Article  CAS  Google Scholar 

  12. J.H. van der Merwe, J. Electron. Mater. 20, 739 (1991).

    Google Scholar 

  13. G.J. Shiflet and J.H. van der Merwe, J. Electron. Mater. 20, 785 (1991).

    Article  Google Scholar 

  14. L.B. Freund, MRS Bull. XVII(7), 52 (1992).

  15. C.S. Ozkan, Ph.D. Dissertation, Stanford University (1997).

  16. V.T. Gillard, Ph.D. Dissertation, Stanford University (1995).

  17. D.B. Noble, Ph.D. Dissertation, Stanford University (1991).

  18. F.K. LeGoues, Phys. Rev. Lett. 72, 876 (1994).

    Article  CAS  Google Scholar 

  19. A.G. Cullis, A.J. Pidduck, and M.T. Emeny, J. Cryst. Growth 158, 15 (1996).

    Article  CAS  Google Scholar 

  20. A.G. Cullis, A.J. Pidduck, and M.T. Emeny, Phys. Rev. Let. 75, 2368 (1995).

    Article  CAS  Google Scholar 

  21. M.T. Bulsara, C. Leitz, and E.A. Fitzgerald, Appl. Phys. Lett. 72, 1608 (1998).

    Article  CAS  Google Scholar 

  22. A.F. Schwartzman and R. Sinclair, J. Electron. Mater. 20, 805 (1991).

    Article  CAS  Google Scholar 

  23. J.W. Hutchins, B.J. Skromme, Y.P. Chen, and S. Sivananthan, Appl. Phys. Lett. 71, 350 (1997).

    Article  CAS  Google Scholar 

  24. L. Chibani, M. Hage-Ali, and P. Siffert, J. Cryst Growth 161, 153 (1996).

    Article  CAS  Google Scholar 

  25. C.S. Ozkan, W.D. Nix, and H. Gao, in Structure and Evolution of Surfaces, edited by R.C. Cammarata, E.H. Chason, T.L. Einstein, and E.D. Williams (Mater. Res. Soc. Symp. Proc. 440, Warrendale, PA, 1997), p. 323.

  26. R.J. Asaro, W.A. Tiller, Metall. Trans. 3, 1789 (1972).

    Article  CAS  Google Scholar 

  27. H. Gao, J. Mechan. Phys. Solids 39, 443 (1991).

    Article  Google Scholar 

  28. H. Gao, Modern Theory of Anisotropic Elasticity and Applications, edited by Julian J. Wu, J.C.T. Ting, and D.M. Barnett Society for Industrial and Applied Mathematics, (1991), pp. 139–150.

  29. H. Gao, J. Mechan. Phys. Solids 42, 741 (1994).

    Article  Google Scholar 

  30. L.B. Freund, F. Jonsdottir, J. Mechan. Phys. Solids 41, 1245 (1993).

    Article  Google Scholar 

  31. C.S. Ozkan, W.D. Nix, and H. Gao, in Thin Films: Stresses and Mechanical Properties VI, edited by W.W. Gerberich, H. Gao, J-E. Sundgren, and S.P. Baker (Mater. Res. Soc. Symp. Proc. 436, Warrendale, PA, 1997), p. 487.

  32. C-H. Chiu and H. Gao, in Mechanisms of Thin Film Evolution, edited by S.M. Yalisove, C.V. Thompson, and D.J. Eaglesham (Mater. Res. Soc. Symp. Proc. 317, Pittsburgh, PA, 1994), p. 369.

  33. D.J. Srolovitz, Acta Metall. 37, 621 (1989).

    Article  Google Scholar 

  34. C-H. Chiu, H. Gao, Int. J. Solids Struct. 30, 2983 (1993).

    Article  Google Scholar 

  35. C.S. Ozkan, W.D. Nix, and H. Gao, in Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke (Mater. Res. Soc. Symp. Proc. 399, Pittsburgh, PA, 1996), p. 407.

  36. D.E. Jesson, S.J. Pennycook, J.M. Baribeau, and D.C. Houghton, Phys. Rev. Lett 71, 1744 (1993).

    Article  CAS  Google Scholar 

  37. D.E. Jesson, K.M. Chen, and S.J. Pennycook, MRS Bull. (21)4, 31 (1996).

  38. S. Guha, A. Madhukar, and K.C. Rajkumar, Appl. Phys. Lett. 57, 2110 (1990).

    Article  CAS  Google Scholar 

  39. A. Dieguez, A. Vila, A. Cornet, and S.A. Clark, J. Vac. Sci. Technol. B 15–3, 687 (1997).

    Article  Google Scholar 

  40. A.G. Cullis, MRS Bull. 21(4), 21 (1996).

    Article  CAS  Google Scholar 

  41. D.D. Perovic, D.C. Houghton, J.P. Noel, and N.L. Rowell, Microscopy of Semiconducting Materials, SMM VIII, pp. 309–312 (1993).

  42. J.A. Floro, E. Chason, R.D. Twesten, and R.Q. Hwang, Phys. Rev. Lett. 79, 3946 (1997).

    Article  CAS  Google Scholar 

  43. C.S. Ozkan, W.D. Nix, and H. Gao, Appl. Phys. Lett. 70, 2247 (1997).

    Article  CAS  Google Scholar 

  44. J.A. Floro, E. Chason, S.R. Lee, and R.D. Twesten, J. Electro. Mater. 26, 969 (1997).

    Article  CAS  Google Scholar 

  45. D.J. Eaglesham and R. Hull, Mater. Sci. Eng. B 30, No. 2–3, 197, (1995).

    Article  Google Scholar 

  46. H.P. Strunk, M. Albrecht, S. Christiansen, and W. Dorsch, in Microscopy of Semiconducting Materials, edited by A.G. Cullis and J.L. Hutchinson (Proc. Royal Microscopical Soc. Conf., Bristol, UK, 1997).

  47. S.B. Samavedam and E.A. Fitzgerald, J. Appl. Phys. 81, 3108 (1997).

    Article  CAS  Google Scholar 

  48. C.S. Ozkan, W.D. Nix, and H. Gao, in Defects in Electronic Materials II, edited by J. Michel, T. Kennedy, K. Wada, and K. Thonke (Mater. Res. Soc. Proc. 442, Warrendale, PA, 1997), p. 373.

  49. P. Muellner, H. Gao, and C.S. Ozkan, Philos. Mag. A 75, 925 (1997).

    Article  CAS  Google Scholar 

  50. H. Gao, C.S. Ozkan, W.D. Nix, J. Zimmerman, and L.B. Freund, Philos. Mag. A 79, 349 (1999).

    Article  CAS  Google Scholar 

  51. J.R. Rice and D.C. Drucker, Int. J. Fract. Mech. 3, 19 (1967).

    Article  Google Scholar 

  52. J.D. Eshelby, Inelastic Behavior of Solids, (McGraw Hill, New York, 1970), pp. 78–115.

    Google Scholar 

  53. W.H. Yang, & D.J. Srolovitz, J. Mech. Phys. Solids 42, 1551 (1994).

    Article  Google Scholar 

  54. L.B. Freund, Acta Mech. Sinica 1, 16 (1994).

    Article  Google Scholar 

  55. L.B. Freund, Int. J. Solids Struct. 32, 911 (1995).

    Article  Google Scholar 

  56. H. Gao, Proc. R. Soc. London, Ser. A 448, 465 (1995).

    Article  Google Scholar 

  57. J.P. Hirth and J. Lothe, Theory of Dislocations (Wiley Interscience, New York, 1982).

    Google Scholar 

  58. H. Gao, Int. J. Solids Structures 28, 703 (1991).

    Article  Google Scholar 

  59. K.A. Ingebrigtsen and A. Tonning, Phys. Rev. 184, 942 (1969).

    Article  Google Scholar 

  60. D.M. Barnett and J. Lothe, Proc. R. Soc. London, Ser. A 402, 135 (1985).

    Article  Google Scholar 

  61. M. Liehr, in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by R.J. Nemanich, C.R. Helms, M. Hirose, and G.W. Rubloff (Mater. Res. Soc. Symp. Proc. 259, Pittsburgh, PA, 1992), p. 3.

  62. V.A. Burrows, Y.J. Chabal, G.S. Higashi, K. Raghavachari, and S.B. Christman, Appl. Phys. Lett. 53, 998 (1988).

    Article  CAS  Google Scholar 

  63. C-C. Chen, D. Smith, G. Anderson, and S. Hagstrom, in Chemical Surface Preparation, Passivation and Cleaning for Semiconductor Growth and Processing, edited by R.J. Nemanich, C.R. Helms, M. Hirose, and G.W. Rubloff (Mater. Res. Soc. Symp. Proc. 259, Pittsburgh, PA, 1992), p. 443.

  64. C.S. Ozkan, W.D. Nix, and H. Gao, in Thin Films—Stresses and Mechanical Properties VII, edited by R.C. Cammarata and M.A. Nastasi (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998), p. 291.

  65. L.B. Freund and F. Jondsottir, J. Mech. Phys. Solids 41, 1245 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozkan, C.S., Nix, W.D. & Gao, H. Stress-driven surface evolution in heteroepitaxial thin films: Anisotropy of the two-dimensional roughening mode. Journal of Materials Research 14, 3247–3256 (1999). https://doi.org/10.1557/JMR.1999.0439

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0439

Navigation