Skip to main content
Log in

The effects of nonhydrostatic compression and applied electric field on the electromechanical behavior of poled lead zirconate titanate 95/5–2Nb ceramic during the ferroelectric to antiferroelectric polymorphic transformation

  • Journal of Materials Research
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We conducted hydrostatic compression and constant-stress-difference experiments, with and without an applied electric field, on poled, niobium-doped lead zirconate titanate ceramic. The objective was to quantify the effects of nonhydrostatic stress and electric field bias on electromechanical behavior of the ceramic during the ferroelectric, rhombohedral → antiferroelectric, orthorhombic phase transformation. Increasing stress difference (shear stress) decreases the mean stress at which the transformation occurs. Increasing shear stress also retards the rate of transformation, causing reductions in both the rate of charge release and peak voltage attained during depoling. Application of the electric field bias slightly increases the transformation pressure for poled ceramic. Previously, we showed that under nonhydrostatic stress, the transformation took place in unpoled ceramic when the maximum compressive stress equalled the hydrostatic pressure at which the transformation would otherwise occur. This simple stress criterion does not apply to poled ceramic. However, poled material has a preferred crystallographic orientation and mechanical anisotropy, whereas unpoled ceramic is isotropic. We present a qualitative model for the transformation under nonhydrostatic stress-related to that anisotropy, which resolves these seemingly disparate observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. E. Newnham, in Perovskite: A Structure of Great Interest to Geophysics and Materials Science, edited by A. Navrotsky and D. J. Weidner (American Geophysical Union, Washington, DC, 1989), pp. 91–98.

    Google Scholar 

  2. M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 13–25 (1989).

    Article  CAS  Google Scholar 

  3. P. C. Lysne and C. M. Percival, J. Appl. Phys. 46, 1519–1525 (1975).

    Article  CAS  Google Scholar 

  4. F. Bauer, K. Vollrath, Y. Fetiveau, and L. Eyraud, Ferroelectrics 10, 61–64 (1976).

    Article  Google Scholar 

  5. E.Z. Novitskii, V.D. Sadunov, and G. Yu. Karpenko, Combustion, Explosion and Shock Waves 16, 505–516 (1979).

    Google Scholar 

  6. I. J. Fritz and J.D. Keck, J. Phys. Chem. Solids 39, 1163–1167 (1978).

    Article  CAS  Google Scholar 

  7. D. H. Zeuch, S. T. Montgomery, J. D. Keck, and D. J. Zimmerer, Hydrostatic and Triaxial Compression Experiments on Unpoled PZT 95/ 5-2Nb Ceramic: The Effects of Shear Stress on the FR1 → AO Polymorphic Phase Transformation, Report No. SAND92-0484, Sandia National Laboratories, Albuquerque, NM (1992), 164 pp. (Available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161).

  8. D. H. Zeuch, S. T. Montgomery, and J. D. Keck, J. Mater. Res. 7, 3314–3332 (1992).

    Article  CAS  Google Scholar 

  9. D. H. Zeuch, S. T. Montgomery, and J. D. Keck, J. Mater. Res. 9, 1322–1327 (1994).

    Article  CAS  Google Scholar 

  10. D. Berlincourt, H.H. A. Krueger, and B. Jaffe, J. Phys. Chem. Solids 25, 659–674 (1964).

    Article  CAS  Google Scholar 

  11. M. J. Haun, E. Furman, H. A. McKinstry, and L. E. Cross, Ferroelectrics 99, 27–44 (1989).

    Article  CAS  Google Scholar 

  12. M. J. Haun, Z. Q. Zhuang, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 45–54 (1989).

    Article  CAS  Google Scholar 

  13. M. J. Haun, E. Furman, T. R. Halemane, and L. E. Cross, Ferroelectrics 99, 55–62 (1989).

    Article  CAS  Google Scholar 

  14. M. J. Haun, E. Furman, S. J. Jang, and L. E. Cross, Ferroelectrics 99, 63–86 (1989).

    Article  CAS  Google Scholar 

  15. P. Yang and D. A. Payne, J. Appl. Phys. 80, 4001–4005 (1996).

    Article  CAS  Google Scholar 

  16. I. J. Fritz, J. Appl. Phys. 50, 5265–5271 (1979).

    Article  CAS  Google Scholar 

  17. R.D. Hardy, Event Triggered Data Acquisition in the Rock Mechanics Laboratory, Report No. SAND93-0256, Sandia National Laboratories, Albuquerque, NM (1993), 120 pp. (Available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.)

  18. R.H. Dungan and L.J. Storz, J. Am. Ceram. Soc. 68, 530–533 (1985).

    Article  CAS  Google Scholar 

  19. D.H. Zeuch, S.T. Montgomery, and D.J. Zimmerer, The Effects of Non-hydrostatic Compression and Applied Electric Field on the Electromechanical Behavior of Poled PZT 95/5-2Nb Ceramic During the FR1 → AO Polymorphic Phase Transformation, Report No. SAND95-1951, Sandia National Laboratories, Albuquerque, NM (1995), 114 pp. (Available from National Technical Information Service, U.S. Dept. of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.)

  20. I.J. Fritz, J. Appl. Phys. 49, 4922–4928 (1978).

    Article  CAS  Google Scholar 

  21. S. R. Burlage, J. Appl. Phys. 36, 1324–1328 (1965).

    Article  CAS  Google Scholar 

  22. R.S. Coe and M. S. Paterson, J. Geophys. Res. 74, 4921–4948 (1969).

    Article  CAS  Google Scholar 

  23. R.C. Fletcher, J. Geophys. Res. 78, 7661–7666 (1973).

    Article  Google Scholar 

  24. P-Y. F. Robin, Amer. Mineral. 59, 1286–1298 (1974).

    CAS  Google Scholar 

  25. W.D. Means, Stress and Strain: Basic Concepts of Continuum Mechanics for Geologists (Springer-Verlag, New York, 1976), 339 pp.

  26. D.H. Zeuch, S.T. Montgomery, and D. J. Holcomb, unpublished.

  27. D.H. Zeuch, S. T. Montgomery, and D.J. Holcomb, Further Evidence for a “Maximum Compressive Stress” Criterion for Onset of the FR1 → AO Transformation in PZT 95/5-2Nb Ceramic Under Nonhydrostatic Loading, presented at The Pacific Coast Regional and Basic Science Division Meeting of the American Ceramic Society, October 12–15, San Francisco, CA, 1997.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeuch, D.H., Montgomery, S.T. & Holcomb, D.J. The effects of nonhydrostatic compression and applied electric field on the electromechanical behavior of poled lead zirconate titanate 95/5–2Nb ceramic during the ferroelectric to antiferroelectric polymorphic transformation. Journal of Materials Research 14, 1814–1827 (1999). https://doi.org/10.1557/JMR.1999.0245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1999.0245

Navigation