Skip to main content
Log in

The effect of oxygen partial pressure during cooling on lead zirconate titanate thin film growth by using rf magnetron sputtering method

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The lead zirconate titanate (PZT) thin film was deposited on platinized silicon wafer substrate by the rf magnetron sputtering method. In order to investigate the effect of cooling ambient, oxygen partial pressure was controlled during cooling PZT films. The PZT films cooled at lower oxygen partial pressure had perovskite phase and pyrochlore phase in both as-grown and postannealed films, but in the PZT films cooled at higher oxygen partial pressure, pyrochlore phases were not detected by XRD. As the oxygen partial pressure became lower during cooling, the capacitors had low values of remanent polarization and coercive field for as-grown films. The PZT capacitor with such a low value was recovered by postannealing in air, but its electrical properties had the same tendency before and after annealing. Microstructure was also affected by cooling ambient. Higher oxygen partial pressure on cooling reduced the number of very fine grains, and enhanced uniform grain distribution. Fatigue characteristics were also enhanced by cooling at higher oxygen partial pressure. However, the imprint was negligible irrespective of oxygen partial pressure upon cooling. The cooling procedure at higher oxygen ambients is believed to reduce the amounts of nonferroelectric second phases and oxygen vacancies. We find that oxygen partial pressure during cooling is a considerable process parameter. Therefore, care should be taken in treating the parameter after depositing films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Evans, Jr. and R. Womack, IEEE J. Solid-State Circuit 23, 1171 (1988).

    Article  Google Scholar 

  2. L. H. Parker and A. F. Tasch, IEEE Circuits and Device Magazine, Jan. 17 (1990).

  3. D. L. Polla, C. Ye, P. Schiller, T. Tamagawa, W. P. Robbins, D. Glumac, and C-C. Hsueh, in Ferroelectric Thin Film II, edited by A. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc 243, Pittsburgh, PA, 1992), p. 55.

  4. O. Auciello, A.I. Kingon, and S. B. Krupanidhi, MRS Bull. 21, 25 (1996).

    Article  CAS  Google Scholar 

  5. T. S. Kim, D. J. Kim, J. K. Lee, and H. J. Jung, in Ferroelectric Thin Film V, edited by S. B. Desu, R. Ramesh, B. A. Tuttle, R. E. Jones, and I. K. Yoo (Mater Res. Soc. Symp. Proc. 433, Pittsburgh, PA, 1996), p. 243.

  6. S. B. Krupanidhi, N. Maffei, M. Sayer, and K. El-Assal, J. Appl. Phys. 54, 6601 (1983).

    Article  CAS  Google Scholar 

  7. K. Sreenivas and M. Sayer, J. Appl. Phys. 64, 1484 (1988).

    Article  CAS  Google Scholar 

  8. A. I. Kingon, H. N. Al-Shareef, K. D. Gifford, T. M. Graettinger, S. H. Rou, P. D. Hren, O. Auciello, and S. Bernacki, Integrated Ferroelectrics 2, 361 (1992).

    CAS  Google Scholar 

  9. G. R. Fox and S. B. Krupanidhi, J. Mater. Res. 9, 699 (1994).

    Article  CAS  Google Scholar 

  10. C. K. Kwok and S. B. Desu, in Ferroelectric Thin Film II, edited by A. Kingon, E. R. Myers, and B. Tuttle (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1992), p. 393.

  11. J. Lee and R. Ramesh, Appl. Phys. Lett. 68, 484 (1996).

    Article  CAS  Google Scholar 

  12. J. Lee, R. Ramesh, V. G. Keramidas, W. L. Warren, G. E. Pike, and J.T. Evans, Jr., Appl. Phys. Lett. 66, 1337 (1995).

    Article  CAS  Google Scholar 

  13. M. Huffman, J. P. Goral, M. M. Al-Jassim, A. R. Mason, and K.M. Jones, Thin Solid Films 193/194, 1017 (1990).

  14. S. C. Lee, G. Teowee, R. D. Schrimpe, D. P. Birnie, III, D.R. Uhlmann, and K. F. Galloway, Integrated Ferroelectrics 4, 31 (1994).

  15. J. Lee, V. Chikarmane, C. Sudhama, J. Kim, and A. Tasch, Proc. 4th Int. Symp. Integr. Ferroelectrics (Montery, CA, 1992), p. 298.

  16. I. K. Yoo and S. B. Desu, Mater. Sci. Eng. B13, 319 (1992).

    Article  CAS  Google Scholar 

  17. G. E. Pike, W. L. Warren, D. Dimos, B.A. Tuttle, R. Ramesh, J. Lee, V. G. Keramidas, and J.T. Evans, Jr., Appl. Phys. Lett. 66, 484 (1995).

  18. W. L. Warren, D. Dimos, G. E. Pike, B. A. Tuttle, M. V. Raymond, R. Ramesh, and J. T. Evans, Jr., Appl. Phys. Lett. 67, 866 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, D.J., Kim, T.S., Lee, J.K. et al. The effect of oxygen partial pressure during cooling on lead zirconate titanate thin film growth by using rf magnetron sputtering method. Journal of Materials Research 13, 3442–3448 (1998). https://doi.org/10.1557/JMR.1998.0468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0468

Navigation