Skip to main content
Log in

Low Energy Ion Impact-enhanced Growth of Cubic Boron Nitride in a Supersonic Nitrogen/argon Plasma Flow

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper describes the growth and analysis of cubic boron nitride films in a low-density, supersonic nitrogen/argon plasma flow into which boron trichloride gas was injected. Both hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) were synthesized using this apparatus. Phase selectivity is obtained by applying a relatively low negative bias voltage to the substrate. All of the films described in this paper were grown on {100} silicon wafers at substrate temperatures varying from 400–700 °C. Boron nitride films with greater than 90% cubic phase were successfully synthesized with this method. The films were analyzed using infrared spectroscopy, x-ray photoelectron spectroscopy, and scanning electron microscopy. The volumetric percentages of the hexagonal and cubic phases were determined from model fits to the infrared transmission spectra of the films. X-ray photoelectron spectroscopy provided qualitative evidence for the presence and/or lack of sp2 bonding through the identification of a π-plasmon feature in the spectra. Infrared reflectance spectra are used to provide insight into the growth mechanisms leading to c-BN formation and have revealed features which are not present in the transmission spectra, specifically the 1305 cm −1 LO mode of c-BN and the 1610 cm −1 LO mode of h-BN. The mean ion energies involved with this bias-enhanced chemical vapor deposition (CVD) process are much lower than the ion energies in traditional physical vapor deposition (PVD) processes; however, the ion fluxes (currents) used in this CVD process are at least an order of magnitude higher, resulting in a total momentum transfer to the deposited atoms through ion bombardment that is at least equal to or greater than that reported for many ion-enhanced PVD processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Yarbrough and R. Messier, Science 247, 688 (1990).

    Article  CAS  Google Scholar 

  2. F. G. Celii and J. E. Butler, Annu. Rev. Phys. Chem. 42, 643 (1991).

  3. J. E. Butler and R. L. Woodin, Philos. Trans. R. Soc., Ser. A 342, 209 (1993).

  4. M. H. Loh and M. A. Cappelli, Surf. Coatings Technol. 54/55, 408 (1992).

  5. M. H. Loh and M. A. Cappelli, Diamond and Related Materials 2, 454 (1993).

  6. M. A. Cappelli and M. H. Loh, Diamond and Related Materials 3, 417 (1994).

  7. M. H. Loh, J. G. Liebeskind, and M. A. Cappelli, AIAA 94-3233, also Proceedings of the Joint Propulsion Conference (AIAA, Indianapolis, 1994).

  8. M. H. Loh and M. A. Cappelli, 4th International Symposium on Diamond Materials, 187th Meeting of the Electrochemical Society (ECS, Reno, NV, 1995).

  9. D. H. Berns, A. E. Kull, and M. A. Cappelli, AIAA 95-2824, also Proceedings of the Joint Propulsion Conference (AIAA, San Diego, 1995).

  10. H. Saitoh and W. A. Yarbrough, Diamond and Related Materials 1, 137 (1992).

  11. G. Demazeau, Diamond and Related Materials 4 (4), 284 (1995).

  12. L. Vel, G. Demazeau, and J. Etourneau, Materials Science and Engineering B10, 149 (1991).

  13. G. Doll, J. A. Sell, C. A. Taylor II, and R. Clarke, Phys. Rev. B 43, 6816 (1991).

  14. Y. Ichinose, H. Saitoh, and Y. Hirotsu, Surf. Coatings Technol. 43/44, 116 (1990).

  15. S. V. Ngyen, T. Ngyen, H. Treichel, and O. Spindler, J. Electrochem. Soc. 141, 1633 (1994).

  16. M. Okamoato, Y. Utsumi and Y. Osaka, Jpn. J. Appl. Phys. 31, 3455 (1992).

  17. T. Ichiki, T. Momose, and T. Yoshida, J. Appl. Phys. 75 (3), 1330 (1994).

  18. M. Mieno and T. Yoshida, Jpn. J. Appl. Phys. 29, L1175 (1990).

  19. D. J. Kester, K. S. Aily, and R. F. Davis, Diamond and Related Materials 3, 332 (1994).

  20. T. A. Friedman, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, J. Appl. Phys. 76 (5), 3088 (1994).

  21. T. Ikeda, Appl. Phys. Lett. 61 (7), 786 (1992).

  22. M. Sueda, T. Kobayashi, H. Tsukamoto, T. Rokkaku, S. Morimoto, Y. Fukay, N. Yamashita, and T. Wada, Thin Solid Films 228, 97 (1993).

  23. D. R. McKenzie, W. D. McFall, W. G. Sainty, C. A. Davis, and R. E. Colins, Diamond Related Mater. 2, 970 (1993).

  24. M. Nastasi and J. W. Mayer, Mater. Sci. Rep. 6, 1 (1991).

  25. D. H. Berns and M. A. Cappelli, Appl. Phys. Lett. 68 (19), 2711 (1996).

  26. Semiconductors—Group IV Elements and III-V Compounds, edited by O. Madelung (Springer-Verlag, New York, 1991), p. 60.

  27. A. Lehmann, L. Schumann, and K. Hubner, Phys. Status Solidi (b) 121, 505 (1984).

  28. H. R. Phillip and E. A. Taft, Phys. Rev. 120 (1), 37 (1960).

  29. R. W. Christy, AJP 40, 1403 (1972).

  30. P. J. Gielisse, S. S. Mitra, J. N. Plendl, R. D. Griffis, L. C. Mansur, R. Marshall, and E. A. Pascoe, Phys. Rev. 155 (3), 1039 (1967).

  31. R. Geick, C. H. Perry, and G. Rupprecht, Phys. Rev. 146 (2), 543 (1966).

  32. J. A. Sanjorjo, E. Lopez-Cruz, P. Vogl, and M. Cardona, Phys. Rev. B 28 (8), 4579 (1983).

  33. R. Trehan, Y. Lifshitz, and J. W. Rabalais, J. Vac. Sci. Technol. A8 (6), 4026 (1990).

  34. Handbook of X-Ray Photoelectron Spectroscopy, edited by C. G. Wagner (Perkin-Elmer, Eden Prairie, MN, 1979).

  35. P. B. Mirkarimi, K. F. McCarty, D. L. Medlin, W. G. Wolfer, T. A. Friedmann, E. J. Klaus, G. F. Cardinale, and D. G. Howitt, J. Mater. Res. 9, 2925 (1994).

  36. J. Robertson, Diamond Related Mater. 5, 519 (1996).

  37. T. Yoshida, Diamond Related Mater. 5, 501 (1996).

  38. S. Reinke, M. Kuhr, and W. Kulisch, Diamond Related Mater. 5, 508 (1996).

  39. D. J. Kester, K. S. Ailey, R. F. Davis, and K. L. More, J. Mater. Res. 8, 1213 (1993).

  40. T. Ichiki, S. Amagi, and T. Yoshida, J. Appl. Phys. 79 (8), 4381 (1996).

  41. J. M. Mendez, S. Muhl, E. Andrade, L. Cota-Araiza, M. Farias, and G. Soto, Diamond Related Mater. 3, 831 (1994).

  42. M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (John Wiley and Sons, Inc., New York, 1994), p. 171.

  43. “IONTRANS,” Stanford University.

  44. D. J. Kester and R. Messier, J. Appl. Phys. 72, 504 (1992).

  45. D. L. Medlin, T. A. Friedmann, P. B. Mirkarimi, G. F. Cardinale, and K. F. McCarty, J. Appl. Phys. 79 (7), 3567 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berns, D.H., Cappelli, M.A. Low Energy Ion Impact-enhanced Growth of Cubic Boron Nitride in a Supersonic Nitrogen/argon Plasma Flow. Journal of Materials Research 12, 2014–2026 (1997). https://doi.org/10.1557/JMR.1997.0271

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0271

Navigation