Skip to main content
Log in

Role of antimony sulfide buffer layers in the growth of ferroelectric antimony sulfo-iodide thin films

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The growth and properties of ferroelectric antimony sulfo-iodide (SbSI) films on platinized silicon (Pt/Ta/SiO2/Si) for various applications are reported here. Films were grown with and without antimony sulfide (Sb2S3) buffer layers using the physical vapor transport technique (PVT). The Sb2S3 buffer layers significantly improve the crystalline orientation and microstructure of the SbSI films. It is possible to control the crystalline orientation of the SbSI films to a large degree by annealing the buffer layers under optimized conditions of temperature and time. The films are chemically homogeneous, uniform in thickness, and ferroelectric in nature. The PVT method is effective for the growth of device quality ferroelectric SbSI films with preferred orientation along the c-axis either perpendicular or parallel to the substrate surface. The former configuration is particularly suited for the fabrication of uncooled focal plane arrays, whereas the films with c-axis orientation parallel to the substrate are useful for the development of infrared imagers based on the pyro-optic effect. The peak dielectric constant of c-axis oriented films (perpendicular to the substrate) is determined to be 590 at the Curie point of 19 °C. This is the highest value of the dielectric constant ever reported for SbSI films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Nitsche and W. J. Merz, J. Phys. Chem. Solids 13, 154 (1960).

    Article  CAS  Google Scholar 

  2. E. Fatuzzo, G. Harbeke, W. J. Merz, R. Nitsche, H. Roetschi, and W. Ruppel, Phys. Rev. 127, 127 (1962).

    Google Scholar 

  3. R. Nitsche, H. Roetschi, and P. Wild, Appl. Phys. Lett. 4, 210 (1964).

    Article  CAS  Google Scholar 

  4. L. A. Zadorozhnaya, V. A. Lyachovitskaya, E. I. Givargizov, and L. M. Belyaev, J. Cryst. Growth 41, 61 (1977).

    Article  CAS  Google Scholar 

  5. K. Toyoda, Ferroelectrics 69, 201 (1986).

    Article  CAS  Google Scholar 

  6. E. I. Gerzanich, L. A. Lyakhovitskaya, V. M. Fridkin, and B. A. Popovkin, in Current Topics in Materials Science, edited by E. Kaldis (North-Holland Publishing Company, Amsterdam, 1982), pp. 141–155.

  7. J. Li, D. Viehland, A. S. Bhalla, and L. E. Cross, J. Appl. Phys. 71, 2106 (1992).

    Article  CAS  Google Scholar 

  8. L. E. Cross, A. Bhalla, F. Ainger, and D. Damjanovic, U. S. Patent No. 4994672, 1991.

  9. M. Yoshida, K. Yamanaka, and Y. Hamakawa, Jpn. J. Appl. Phys. 12, 1699 (1973).

    Article  CAS  Google Scholar 

  10. A. Mansingh and T. Sudarsena Rao, J. Appl. Phys. 58, 3530 (1985).

    Article  CAS  Google Scholar 

  11. P. K. Ghosh, A. S. Bhalla, and L. E. Cross, Ferroelectrics 51, 29 (1983).

    Article  Google Scholar 

  12. S. Narayanan and R. K. Pandey, in Proc. 9th Int. Symp. Appln. of Ferroelectrics (University Park, PA, 1994), p. 309 (also see dissertation, “Growth and evaluation of ferroelectric SbSI thin films for thermal imaging applications,” by Narayanan Solayappan, Texas A&M University, May 1996).

  13. V. A. Aleshin and B. A. Popovkin, Izv. Akad. Nauk SSSR, Neorg. Mater. 26, 1391 (1990).

    CAS  Google Scholar 

  14. A. I. Pankrashov, L. A. Zadorozhnaya, and E. I. Givargizov, Sov. Phys. Crystallogr. 32, 429 (1987).

    Google Scholar 

  15. Bum Ki Moon and Hiroshi Ishiwara, Jpn. J. Appl. Phys. 33, 1472 (1994).

    Article  Google Scholar 

  16. Joon Sung Lee, Chang Jung Kim, Dae Sung Moon, Chaun Gi Choi, Jae Myung Kim, and Kwangsoo No, Jpn. J. Appl. Phys. 33, 260 (1994).

    Article  Google Scholar 

  17. P. Arun and A. G. Vedeshawar, J. Appl. Phys. 79 (81), 4029 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solayappan, N., Raina, K.K., Pandey, R.K. et al. Role of antimony sulfide buffer layers in the growth of ferroelectric antimony sulfo-iodide thin films. Journal of Materials Research 12, 825–832 (1997). https://doi.org/10.1557/JMR.1997.0120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1997.0120

Navigation