Skip to main content
Log in

Printed circuit board technology inspired stretchable circuits

  • Materials for stretchable electronics
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

In the past 15 years, stretchable electronic circuits have emerged as a new technology in the domain of assembly, interconnections, and sensor circuit technologies. In the meantime, a wide variety of processes using many different materials have been explored in this new field. In the current contribution, we present an approach inspired by conventional rigid and flexible printed circuit board (PCB) technology. Similar to PCBs, standard packaged, rigid components are assembled on copper contact pads using lead-free solder reflow processes. Stretchability is obtained by shaping the copper tracks as horseshoe-shaped meanders. Elastic materials, predominantly polydimethylsiloxanes, are used to embed the conductors and the components, thus serving as a circuit carrier. We describe mechanical modeling, aimed at optimizing the build-up toward maximum mechanical reliability of the structures. Details on the production process, reliability assessment, and a number of functional demonstrators are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. M. Maghribi, J. Hamilton, D. Polla, K. Rose, T. Wilson, P. Krulevitch, in 2nd Annual International IEEE-EMB Special Topic Conference on Microtechnologies in Medicine and Biology (May 2002), pp. 80 – 83.

  2. S. Lacour, S. Wagner, Z. Huang, Z. Suo, Appl. Phys. Lett. 82, 2404 (2003).

    Google Scholar 

  3. D.S. Gray, J. Tien, C.S. Chen, Adv. Mater. 16 (5), 393 (2004).

  4. H.-J. Kim, C. Son, B. Ziaie, Appl. Phys. Lett. 92, 011904 (2008).

  5. D.-Y. Khang, H. Jiang, Y. Huang, J. Rogers, Science 311 (5758), 208 (2006).

  6. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, T. Sakurai, PNAS 102 (35), 12321 (2005).

  7. F. Bossuyt, J. Guenther, T. Loher, M. Seckel, T. Sterken, J. de Vries, Microelectron. Reliab. 51 (3), 628 (2011).

  8. J. Fjelstad, J. Vanfleteren, Flexible Circuit Technology, 4th ed. (BR Publishing, Seaside, OR), pp. 478 – 513 (2011).

  9. F. Bossuyt, T. Vervust, F. Axisa, J. Vanfleteren, European Microelectronics and Packaging Conference. Rimini, Italy, 15–18 June 2009.

  10. A. Ostmann, T. Loher, M. Seckel, L. Bottcher, H. Reichl, Proc. IMPACT 3rd Int. Conf. 22–24 October 2008.

  11. M. Gonzalez, B. Vandevelde, W. Christiaens, Y.Y. Hsu, F. Iker, F. Bossuyt, O. van der Sluis, P. Timmermans. Microelectron. Reliab. 51, 1069 (2011).

  12. J.A. Rogers, Transducers 2009, Denver, CO, June 21–25, 2009, p. 1602.

  13. J. Song, H. Jiang, W.M. Choi, D.Y. Khang, Y. Huang, J.A. Rogers, Journal of Applied Physics 103, 1 (2008).

  14. M. Gonzalez, F. Axisa, M. Vanden Bulcke, D. Brosteaux, B. Vandevelde, J. Vanfleteren, Microelectron. Reliab. 48 (6), 825 (2008).

  15. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, F. Axisa, J. Vanfleteren, I. De Wolf, Thin Solid Films 519 (7), 2225 (2011).

  16. Y.Y. Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, I. De Wolf, IEEE Trans. Electron Devices 58 (8), 2680 (2011).

  17. F. Axisa, F. Bossuyt, J. Vanfleteren, Proc. 2nd IEEE ESTC Conf., Greenwich, London, UK, 1–4 September 2008, pp. 1387–1390.

  18. www.stella-project.de.

  19. F. Axisa, P. Jourand, E. Lippens, M. Rymarczyk-Machal, N. De Smet, E. Schacht, J. Vanfleteren, R. Puers, R. Cornelissen, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1–20, pp. 4864–4867 (2009).

  20. J. Wu, Z.J. Liu, J. Song, Y. Huang, K.C. Hwang, Y.W. Zhang, J.A. Rogers, Appl. Phys. Lett. 99, 6 (2011).

  21. F. Gemperle, C. Kasabach, J. Stivoric, M. Bauer, R. Martin. Second International Symposium on Wearable Computers, 116–122 (1998).

  22. T. Vervust, F. Bossuyt, F. Axisa, J. Vanfleteren, Proc. MRS Spring Meeting, Symp. JJ, San Francisco, CA, 8–9 April 2010, 1271, p. 6.

  23. J. Missinne, G. Van Steenberge, B. Van Hoe, K. Van Coillie, T. Van Gijseghem, P. Dubruel, J. Vanfleteren, P. Van Daele, Proceedings of SPIE-The International Society for Optical Engineering, 7221 (2009).

  24. T. Sterken, J. Vanfleteren, T. Torfs, M. Op de Beeck, F. Bossuyt, C. Van Hoof, Proc. 33rd IEEE EMBC Conf. Boston, MA, 30 August– 3 September 2011, p. 4.

Download references

Acknowledgments

The authors gladly acknowledge the financial support of this research by the European, Belgian, and Flemish authorities through the following projects: IWT-SBO-BioFlex, BELSPO-TAP2-SWEET, EC-FP6-STELLA, EC-FP7-Place-It, and EC-FP7-PASTA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vanfleteren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vanfleteren, J., Gonzalez, M., Bossuyt, F. et al. Printed circuit board technology inspired stretchable circuits. MRS Bulletin 37, 254–260 (2012). https://doi.org/10.1557/mrs.2012.48

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.48

Navigation