Skip to main content
Log in

Optimal and Manufacturable Two-dimensional, Kagomé-like Cellular Solids

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We used the topology optimization technique to obtain two-dimensional, isotropic cellular solids with optimal effective elastic moduli and effective conductivity. The overall aim was to obtain the best (simplest) manufacturable structures for these effective properties, i.e., single-length-scale structures. Three different but simple periodic structures arose due to the imposed geometric mirror symmetries: lattices with triangular-like cells, hexagonal-like cells, or Kagomé-like cells. As a general rule, the structures with the Kagomé-like cells provided the best performance over a wide range of densities, i.e., for 0 ≰ ф <0.6, where ф is the solid volume fraction (density). At high densities (ф < 0.6), Kagome-like structures were no longer possible, and lattices with hexagonal-like or triangular-like cells provide virtually the same optimal performance. The Kagomé-like structures were found to be a new class of cellular solids with many useful features, including desirable transport and elastic properties, heat-dissipation characteristics, improved mechanical strength, and ease of fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Z. Hashin and S. Shtrikman, J. Appl. Phys. 33, 3125 (1962).

    Article  Google Scholar 

  • K.A. Lurie and A.V. Cherkaev, J. Opt. Theor. Appl. 46, 571 (1985).

    Article  CAS  Google Scholar 

  • A.N. Norris, Mech. Mater. 4, 1 (1985).

    Article  Google Scholar 

  • G.W. Milton, in Homogenization and Effective Moduli of Materials and Media, edited by J.L. Eriksen, D. Kinderlehrer, R. Kohn, and J.L. Lions (Springer-Verlag, New York, 1986).

    Article  Google Scholar 

  • G.A. Francfort and F. Murat, Arch. Rat. Mech. Anal. 94, 307 (1986).

    Google Scholar 

  • S.B. Vigdergauz, Mech. Solids 24, 57 (1989); S.B. Vigdergauz, J. Appl. Mech. 3, 300 (1994).

    Article  Google Scholar 

  • S. Hyun and S. Torquato, J. Mater. Res. 15, 1985 (2000).

    Google Scholar 

  • M.P. Bendsoe and N. Kikuchi, Comp. Meth. Appl. Mech. Eng. 71, 197 (1988).

    Article  CAS  Google Scholar 

  • O. Sigmund and S. Torquato, J. Mech. Phys. Solids 45, 1037 (1997).

    Article  Google Scholar 

  • C. Kittel, Introduction to Solid State Physics, 2nd ed. (John Wiley & Sons, New York, 1956).

    Article  CAS  Google Scholar 

  • S. Torquato, L.V. Gibiansky, M.J. Silva, and L.J. Gibson, Int. J. Mech. Sci. 40, 71 (1998).

    Google Scholar 

  • R.M. Christensen, Int. J. Solids Struc. 37, 93 (2000).

    Article  Google Scholar 

  • M.P. Bendsoe and O. Sigmund, Arch. Appl. Mech. 69, 635 (1999).

    Article  Google Scholar 

  • S. Hyun and S. Torquato, J. Mater. Res. 16, 280 (2001).

    Article  Google Scholar 

  • N. Karmarkar, Combinatoria 4, 373 (1984).

    Article  CAS  Google Scholar 

  • S. Vigdergauz (unpublished).

    Article  Google Scholar 

  • I. Syozi, Prog. Theor. Phys. VI, 306 (1951).

  • P.W. Anderson, Phys. Rev. 102, 1008 (1956).

    Article  Google Scholar 

  • G. Aeppli and P. Chandra, Science 275, 177 (1997).

    Article  CAS  Google Scholar 

  • I.S. Hagemann, Q. Hunag, X.P.A. Gao, A.P. Ramirez, and R.J. Cava, Phys. Rev. Lett. 86, 894 (2001).

    Article  CAS  Google Scholar 

  • M.J. Higgins, Y. Xiao, S. Bhattacharya, P.M. Chaikin, S. Sethuraman, R. Bojko, and D. Spencer, Phys. Rev. Lett. 61, R894 (2000).

    Article  CAS  Google Scholar 

  • S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002).

    CAS  Google Scholar 

  • J. Chen, M.F. Thorpe, and L.C. Davis, J. Appl. Phys. 77, 4349 (1995).

    Book  Google Scholar 

  • L.J. Gibson and M. Ashby, Cellular Solids, 2nd ed. (Pergamon Press, New York, 1997).

    Article  CAS  Google Scholar 

  • D.J. Sypeck and H.N.G. Wadley, J. Mater. Res. 16, 890 (2001).

    Book  Google Scholar 

  • S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, and S. Fichter, Int. J. Solids Struct. (in press).

    Article  CAS  Google Scholar 

  • S. Hyun, A.M. Karlsson, S. Torquato, and A.G. Evans (unpublished).

  • S. Gu, T.J. Lu, and A.G. Evans (unpublished).

  • M. Zhang, Y. Nakayama, and L. Pan, Jpn. J. Appl. Phys. 39, L1242 (2000).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hyun, S., Torquato, S. Optimal and Manufacturable Two-dimensional, Kagomé-like Cellular Solids. Journal of Materials Research 17, 137–144 (2002). https://doi.org/10.1557/JMR.2002.0021

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2002.0021

Navigation