Skip to main content
Log in

Finite temperature structure and thermodynamics of the Au Σ5 (001) twist boundary

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structure and thermodynamic properties of a Σ5 (001) twist boundary in gold are studied as a function of temperature. This study was performed within the framework of the Local Harmonic (LH) model and employed an Embedded Atom Method (EAM) potential for gold. We find that for the Σ5 (001) twist boundary in gold, a distorted CSL structure is stable at low temperatures, but undergoes a phase transformation to a DSC related structure near room temperature. This transformation is shown to be first order. The temperature dependences of the excess grain boundary free energy, enthalpy, entropy, specific heat, and excess volume are calculated. Discontinuities are observed in the slope of the grain boundary excess free energy (versus temperature), in the value of the grain boundary excess specific heat and excess volume. The stable high temperature grain boundary structure has a smaller excess volume than does the lower temperature structure, and both structures have a coefficient of thermal expansion which is in excess of that for the perfect crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Budai, P.D. Bristowe, and S.L. Sass, Acta Metall. 31, 699 (1983).

    Article  CAS  Google Scholar 

  2. M. R. Fitzsimmons and S. L. Sass, Acta Metall. 36, 3103 (1988).

    Article  CAS  Google Scholar 

  3. I. Majid, P. D. Bristowe, and R.W. Balluffi, Phys. Rev. B 40, 2779 (1989).

    Article  CAS  Google Scholar 

  4. M. R. Fitzsimmons and S. L. Sass, Acta Metall. 36, 1009 (1988).

    Article  Google Scholar 

  5. P. D. Bristowe and S. L. Sass, Acta Metall. 28, 575 (1980).

    Article  CAS  Google Scholar 

  6. R. Najafabadi, D. J. Srolovitz, and R. A. LeSar, Scripta Metall. 24, 251 (1990).

    Article  CAS  Google Scholar 

  7. M. R. Fitzsimmons, M. D. Vaudin, and S. L. Sass, Scripta Metall. 22, 105 (1988).

    Article  CAS  Google Scholar 

  8. R.W. Balluffi and T. E. Hsieh, J. Phys. (Paris) 49, C5–337 (1988).

    Article  Google Scholar 

  9. M. Guillope, J. Phys. (Paris) 47, 1347 (1986).

    Article  CAS  Google Scholar 

  10. V. Vitek, Y. Minonishi, and G.J. Wang, J. Phys. (Paris) 46, C4–243 (1985).

    Article  Google Scholar 

  11. F. Carrion, G. Kalonji, and S. Yip, Scripta Metall. 17, 915 (1983).

    Article  CAS  Google Scholar 

  12. P. Deymier, A. Taiwo, and G. Kalonji, Acta Metall. 35, 2719 (1987).

    Article  Google Scholar 

  13. P. Deymier and G. Kalonji, J. Phys. (Paris) 46, C4–213 (1985).

    Article  Google Scholar 

  14. A. P. Sutton, Philos. Mag. A 60, 147 (1989).

    Article  Google Scholar 

  15. L. Q. Chen and G. Kalonji, Philos. Mag. A 60, 525 (1989).

    Article  CAS  Google Scholar 

  16. J. F. Lutsko, D. Wolf, and S. Yip, J. Phys. (Paris) 49, C5–375 (1988).

    Article  Google Scholar 

  17. C. Rottman, J. Phys. (Paris) 49, C5–313 (1988).

    Article  Google Scholar 

  18. R. LeSar, R. Najafabadi, and D. J. Srolovitz, Phys. Rev. Lett. 63, 624 (1989).

    Article  CAS  Google Scholar 

  19. S.M. Foiles, M.I. Baskes, and M.S. Daw, Phys. Rev. B 33, 7983 (1986).

    Article  CAS  Google Scholar 

  20. S. M. Foiles and G. B. Adams, Phys. Rev. B 40, 5909 (1989).

    Article  CAS  Google Scholar 

  21. R. Hultgren, P. D. Desai, D.T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, OH, 1973).

    Google Scholar 

  22. M. R. Fitzsimmons, E. Burkel, and S. L. Sass, Phys. Rev. Lett. 61, 2237 (1988).

    Article  CAS  Google Scholar 

  23. P. D. Bristowe and A. G. Crocker, Philos. Mag. A 38, 487 (1978).

    Article  CAS  Google Scholar 

  24. W. Bollman, Crystal Defects and Crystalline Interfaces (Springer, Berlin, 1970).

    Book  Google Scholar 

  25. Y. Oh and V. Vitek, Acta Metall. 34, 1941 (1986).

    Article  Google Scholar 

  26. S. P. Chen, A. F. Voter, and D. J. Srolovitz, J. Mater. Res. 4, 64 (1989).

    Google Scholar 

  27. D. Korn, A. Morsch, R. Birringer, W. Arnold, and H. Gleiter, J. Phys. (Paris) 49, C5–769 (1988).

    Article  Google Scholar 

  28. D. Wolf and J.F. Lutsko, J. Mater. Res. 4, 1427 (1989).

    Article  CAS  Google Scholar 

  29. H. Kuhn, G. Baero, and H. Gleiter, Acta Metall. 27, 959 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafabadi, R., Srolovitz, D.J. & LeSar, R. Finite temperature structure and thermodynamics of the Au Σ5 (001) twist boundary. Journal of Materials Research 5, 2663–2676 (1990). https://doi.org/10.1557/JMR.1990.2663

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.2663

Navigation