Skip to main content
Log in

Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The misorientation phase space for symmetrical grain boundaries is explored by means of atomistic computer simulations, and the relationship between the tilt and twist boundaries in this three-parameter phase space is clucidated. The so-called random-boundary model (in which the interactions of atoms across the interface are assumed to be entirely random) is further developed to include relaxation of the interplanar spacings away from the grain boundary. This model is shown to include fully relaxed free surfaces naturally, thus permitting a direct comparison of the physical properties of grain boundaries and free surfaces, and hence the determination of ideal cleavage-fracture energies of grain boundaries. An extensive comparison with computer-simulation results for symmetrical tilt and twist boundaries shows that the random-boundary model also provides a good description of the overall structure-energy correlation for both low- and high-angle tilt and twist boundaries. Finally, the role of the interplanar spacing parallel to the grain boundary in both the grain-boundary and cleavage-fracture energies is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See, for example, C. Goux, Can. Metal. Quarterly 13, 9 (1974).

    Article  CAS  Google Scholar 

  2. A. A. Griffith, Philos. Trans. R. Soc. London A 221, 163 (1920).

    Google Scholar 

  3. D. A. Smith, Scripta Metall. 8, 377 (1974).

    Article  Google Scholar 

  4. D. Wolf, J. Phys. Colloque C4 46, C4–197 (1985).

    Google Scholar 

  5. D. Wolf, Acta Metall. 37, 1983 (1989).

    Article  CAS  Google Scholar 

  6. D. Wolf, Acta Metall. 37, 2823 (1989).

    Article  CAS  Google Scholar 

  7. D. Wolf, Scripta Metall. 23, 377 (1989).

    Article  Google Scholar 

  8. W. T. Read and W. Shockley, Phys. Rev. 78, 275 (1950).

    Article  CAS  Google Scholar 

  9. D. Wolf and S. R. Phillpot, Mater. Sci. Eng. A 107, 3 (1989).

    Article  Google Scholar 

  10. M. Kluge, D. Wolf, J. F. Lutsko, and S. R. Phillpot, J. Appl. Phys. 67, 2370 (1990).

    Article  CAS  Google Scholar 

  11. D. Wolf, Acta Metall. 38, 781 (1990).

    Article  CAS  Google Scholar 

  12. D. Wolf, Surf. Sci. 226, 389 (1990).

    Article  CAS  Google Scholar 

  13. See, for example, M. L. Jokl, V. Vitek, and C. J. McMahon, Acta Metall. 28, 1479 (1980).

    Article  Google Scholar 

  14. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1985 (1983).

    Article  Google Scholar 

  15. M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

    Article  CAS  Google Scholar 

  16. M. S. Daw and M. I. Baskes, Phys. Rev. B 33, 7983 (1986).

    Article  Google Scholar 

  17. R. Benedek, J. Phys. F 8, 1119 (1978).

    Article  CAS  Google Scholar 

  18. D. Wolf and J. F. Lutsko, Z. Kristallogr. 189, 239 (1989).

    Google Scholar 

  19. A. Brokman and R. W. Balluffi, Acta Metall. 29, 1703 (1981).

    Article  CAS  Google Scholar 

  20. D. Wolf, Acta Metall. 32, 245 (1984).

    Article  CAS  Google Scholar 

  21. A. P. Sutton, Philos. Trans. R. Soc. London (submitted).

  22. J. R. Smith and A. Banerjea, Phys. Rev. Lett. 59, 2451 (1987).

    Article  CAS  Google Scholar 

  23. D. Wolf, Philos. Mag. A (in press).

  24. J. H. van der Merwe, Proc. R. Soc. London A 43, 616 (1950).

    Google Scholar 

  25. C. Rey and G. Saada, Philos. Mag. A 33, 825 (1977).

    Article  Google Scholar 

  26. R. Bonnet, Philos. Mag. A 43, 1165 (1981).

    Article  CAS  Google Scholar 

  27. A-C. Shi, C. Rottman, and Yu He, Philos. Mag. A 55, 499 (1987).

    Article  Google Scholar 

  28. G-J. Wang and V. Vitek, Acta Metall. 34, 951 (1986).

    Article  CAS  Google Scholar 

  29. V. Vitek, Scripta Metall. 21, 711 (1987).

    Article  CAS  Google Scholar 

  30. D. Wolf, Scripta Metall. 23, 1713 (1989).

    Article  Google Scholar 

  31. D. Wolf, Scripta Metall. 23, 1913 (1989).

    Article  CAS  Google Scholar 

  32. S-W. Chan and R. W. Balluffi, Acta Metall. 26, 113 (1986).

    Google Scholar 

  33. D. Wolf, Philos. Mag. B 59, 667 (1989).

    Article  Google Scholar 

  34. S. R. Phillpot and D. Wolf, Philos. Mag. A 60, 545 (1989).

    Article  CAS  Google Scholar 

  35. D. Wolf, J. Am. Ceram. Soc. 67, 1 (1984).

    Article  CAS  Google Scholar 

  36. D. Wolf, in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by J. Pask and A. Evans (Plenum, New York, 1981), p. 13.

  37. See, for example, A. P. Sutton and V. Vitek, Philos. Trans. R. Soc. London A 309, 1 (1983).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, D. Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals. Journal of Materials Research 5, 1708–1730 (1990). https://doi.org/10.1557/JMR.1990.1708

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1990.1708

Navigation