
Acta Electrotechnica et Informatica, Vol. 18, No. 1, 2018, 19–25, DOI: 10.15546/aeei-2018-0003 19

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

TOWARDS ENERGY-AWARE CODING PRACTICES FOR ANDROID

João SARAIVA*, Marco COUTO*, Csaba SZABÓ**, Dávid NOVÁK**
*HASLab/INESC TEC, University of Minho, Portugal,

E-mail: marco.l.couto@inesctec.pt, saraiva@di.uminho.pt
**Department of Computers and Informatics, Faculty of Electrical Engineering and Informatics,

Technical University of Košice, Letná 9, 042 00 Košice, Slovak Republic, Tel.: +421 55 602 4120,
E-mail: csaba.szabo@tuke.sk, david.novak.2@student.tuke.sk

ABSTRACT
This paper studies how the use of different coding practices when developing Android applications influence energy

consumption. We consider two common Java/Android programming practices, namely string operations and (non) cached image
loading, and we show the energy profile of different coding practices for doing them. With string operations, we compare the
performance of the usage of the standard String class to the usage of the StringBuilder class, while with our second practice we
evaluate the benefits of image caching with asynchronous loading. We externally measure energy consumption of the example
applications using the Trepn profiler application by Qualcomm. Our preliminary results show that selected coding practices do
significantly affect energy consumption, in the particular cases of our practice selection, this difference varies between 20% and
50%.

Keywords: green computing, Android software optimization, code practices, energy consumption of software

1. INTRODUCTION

The widespread use of mobile devices and of cloud
computing to store data are making energy consumption
one of the main concerns for software developers. In fact,
computer/software execution time is no longer the main
concern: Energy is becoming an increasing bottleneck
[17]. Most recent approaches to reduce energy
consumption focus on the hardware aspect of computers.
This is the natural approach: it is the hardware which
literally consumes energy. However, very much like a
driver the car's fuel consumption, the software can also
drastically influence the energy consumed by the
hardware!

Unfortunately, there is no software engineering
discipline providing techniques nor tools to help software
developers to analyze/optimize the energy consumption of
their software! As a consequence, software engineers lack
guidance as to how to improve the energy consumption of
their software systems and which programming practices
are most useful. The software engineering community has
realized this problem, and recently there are several works
showing the programmers concerns about energy
consumption [17, 21], the energy savings suggested by
official Android coding practices [8], the energy
consumption of software testing [10], the energy
consumption per source code line [9], the use of models
[13, 23], importance of the academia [26], etc.

In this paper, we study the influence in energy
consumption of two programming practices in the context
of Android software development: a widely used software
ecosystem to develop mobile Java-based software
applications. In such a setting energy consumption is a
main concern. The coding practices we study include one
that usually occurs in many Java software system, namely
the use of object strings and their operations, and a second
one that is relevant in a mobile setting: the use (or not) of
caching when loading images from the Internet. Practices,
that are often not considered as important by discrete

systems [24] and, in general by formal methods of
software development [22, 25]. In this paper, we study in
detail how different implementations of these two
programming problems may influence the overall energy
consumption of the software. Furthermore, we describe
techniques to monitor the energy consumption of Android
applications, the monitoring of the energy consumption
when such software is running. Our results show that
coding practices do have a great impact in the energy
consumption of Android applications. In both cases we
analyzed one of the coding solutions was always more
energy efficient than the other. As a consequence,
Android developers should be aware of such practices so
that they are able to develop greener applications.

This paper is organized as follows: Section 2 describes
the Android energy monitoring framework we will use to
measure the energy consumption of Android programs.
We show how to instrument the applications' source code
instrumentation so that energy consumption is measured at
runtime. In Section 3 we present the coding practices, and
the energy consumption profiles of the different solutions.
In Section 4 we discuss related work, and in Section 5 we
present our conclusions.

2. ANDROID ENERGY MONITORING
FRAMEWORK

Mainly two measuring techniques will be used to
monitor the energy consumption of Android applications:
internal and external measurements. Both methods are
able to provide reliable results however each method is
targeted at a different expected type of results.

Internal measuring will be provided by the
TimingLogger class bundled by default with the Android
Studio version 1.4 package. This class measures internal
code execution time providing the ability to create
breakpoints along the way of the code execution. An
example showing the use of this class is presented in the
listing of Fig. 1. Firstly, we need to import the

20 Towards Energy-Aware Coding Practices for Android

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

android.util.TimingLogger class. The usage for measuring
purposes follows the following logic: create a new
instance of the TimingLogger class with two logging
String parameters, make a call to the .addSplit() method
(at least one call is required for getting results) after each
block of code that is required to be measured and finally
call the .dumpToLog() method to print out the results into
the logs. Notice the placement of the code block to be
measured in the onResume() method – it is a good practice
not to execute any code in the onCreate() method that is
not related to application initialization otherwise the main
thread may be slowed down by executing unnecessary
code and the application will be forced into the
Application Not Responding state.

Fig. 1 Basic structure shown in Android Studio

External measuring will be provided by the Trepn
profiler application developed by Qualcomm: a popular
hardware manufacturer for mobile devices1. Providing the
ability to profile the whole running system or a standalone
application it is an ideal tool for the job. The application
provides a choice to profile the whole system or only a
single application at a given time.

When profiling a single application there is a choice in
the Settings section to choose which system parameters
should be profiled. The results of the profiling run can be
saved as a .csv file which is a set of comma separated
values or a .db file which is a database version of the
results. The database version is much more versatile and
easily analysable in the application itself.

2.1. Device prerequisites

To obtain the most accurate results when profiling the
energy consumption of an Android application, every
entity that may contribute to additional unwanted power
consumption needs to be disabled or stopped. The CPU or
GPU load for each running service or application (even in
the background) may also influence the energy
consumption. Thus, only the necessary core services
should be running when doing the energy measurements.

1 https://www.qualcomm.com/

3. ENERGY EFFICIENCY OF TWO ANDROID
CODING PRACTICES

Android applications are typically written in the Java
Object Oriented programming language. Java programs
rely on the Java Virtual Machine (JVM) to execute
(bytecode) programs. Android is not different: it uses the
Android Runtime (ART) virtual machine. Despite these
differences basic Java coding guidelines can have a big
impact on performance of an Android application.

3.1. Java-based String Operations

Strings operations are widely used in all programming
languages. The Java language provides two ways of
defining strings and implementing usual operations, like
string insertion and concatenation, namely the use of the
standard string operations or by using the StringBuilder
class. The use of standard string operations, however, may
have a significant impact in the overall energy
consumption of an Android app.

Consider for example that we wish to define an
ArrayList, iterate 999999 times whilst filling the list with
Strings in format 'Number=1' and adding the newly created
String to an ArrayList, finally print out the last String in
the ArrayList.

This simple problem can be expressed via standard
string operations as follows:

String s = "";
for(int i=0;i<999999;i++){
 s = "Number=";
 s = s + i;
 list.add(s);
}

The alternative relies on the StringBuilder class

defined by default in Java instead of creating a new String
in each iteration, as shown next.

final String txt = "Number=";
StringBuilder sb = new StringBuilder();
for(int i=0;i < 999999;i++){
 sb.setLength(0);
 sb.append(txt);
 sb.append(i);
 list.add(sb.toString());
}

To have significant results many iterations are needed

to cut down on errors or values that are significantly out of
ordinary bounds. The number of iterations – in this
example 999999 – helps to exaggerate the time difference
between code execution times of the first and second
approaches. To have reliable results we executed the two
programs 100 times. Both programs were executed in a
LG G3 smartphone, running Android 5.0, with a
Qualcomm Snapdragon 801 CPU. Due to space
limitations we only show the 5 most significant in Tab. 1
(with the biggest deviation from the average value).

Acta Electrotechnica et Informatica, Vol. 18, No. 1, 2018 21

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Table 1 Internal code execution time

Run # Approach #1 [ms] Approach #2 [ms]
1 2936 1693
2 4320 2184
3 4496 2478
4 3285 2374
5 4025 2149

Average 3812.4 2175.6

The results show that the StringBuilder approach runs

1636,8ms faster than the standard string operations one,
even when performing a simple operation.

Fig. 2 visually displays the CPU frequency of the
Qualcomm CPU when running the two programs, as
provided by the Trepn profiler.

a) Standard String Operations

b) StringBuilder Operations

Fig. 2 Trepn profiler graph for a) Standard String Operations
and b) StringBuilder Operations

As it can be observed from the Trepn graphics the use
of standard string operations in Java is much more CPU
intensive than the StringBuilder method, which not only
justifies its longer running time, but also its higher energy
consumption as discussed next.

In Fig. 3 we show the Trepn graphics with the batery
usage when running both programs, where we clearly see
higher energy peaks when performing standard string
operations. For the standard string operations it peaks at
4012mW whereas for the second approach it peaks at only
3157mW which is a saving of 21,31%.

3.2. Image Caching on Loading

Image loading in Android can be performed in both
synchronous or asynchronous way. Doing it
synchronously implies that the application waits until the
images are fully loaded. On the other hand, with
asynchronous loading the application can still work

normally while without waiting for images to load. It
focuses on loading lighter content (text) before loading
heavy content (images and bitmap graphics).

a) Standard String Operations

b) StringBuilder Operations

Fig. 3 Trepn profiler graph for battery use for a) Standard
String Operations and b) StringBuilder Operations

Light content is loaded instantaneously and the heavier
content is loaded asynchronously, i.e. in the background in
another thread and displayed once loaded hence the main
thread is not blocked by this load process. In the meantime
a placeholder image is displayed instead of a blank space.
Fig. 4 shows an example of this techniques being used.

Fig. 4 Lazy loading images with placeholders

Although asynchronous loading already improves the
performance and responsiveness of the application, the
efficiency can be improved further by caching the images.
Results are beneficial for the user and the performance as
well. The only condition is that the application has the
permissions to write to the storage either external or
internal and there is enough space available to save the

22 Towards Energy-Aware Coding Practices for Android

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

images. Caching reduces data traffic as there are no
redundant downloads and it is faster to load an image
from the device storage than downloading it over and over
again.

In order to test the influence of caching images in
energy consumption, we developed two versions of the
same application (represented in Fig. 4): with and without
image caching enabled. We then tested both of them and
tracked the energy consumption, the network traffic and
the memory usage in both cases. The energy consumption
results can be seen in Fig. 5.

a) No image caching

b) Image caching

Fig. 5 Comparing a) no image caching vs. b) image caching
concerning energy consumption

As we can observe in Fig. 5, when loading the same
image, the cache-based approach is 60% faster than the
non-cached one. Fig. 6 displays the battery usage of both
solutions. It is clear from this figure that the cache-based
solution contains a higher energy peak: 5498mW with
image caching, and 4709mW with no image caching.
However, because the cached approach is faster
performing the task, it is approximately 50% more energy
efficient than the non-cached solution.

Another interesting aspect of our analysis was the
network traffic consumed in both approaches. After the
initial download of all images no unnecessary network
traffic occurs with the caching enabled, whereas with the
caching disabled the device initialized three network
transactions to download images, as shown in Fig. 6. Such
behavior resulted in higher battery consumption and
overall higher power consumption peaks (as seen on Fig.
5).

Concerning memory usage, we can observe by
analyzing Fig. 7 that enabling image caching does not
have a significant influence in the application's memory
usage. The graphs for the approach with/without caching
approach are very similar, with very close values for
highest and lowest peak.

a) No image caching

b) Image caching

Fig. 6 Comparing a) no image caching vs b) image caching
concerning network traffic

a) No image caching

b) Image caching

Fig. 7 Comparing a) no image caching vs b) image caching
concerning memory usage

4. RELATED WORK

Energy consumption awareness has brought up an
increasing interest in analyzing the energy efficiency of
software systems. Developers seem to be now more
focused on reducing energy consumption through
software improvement [17], since it is the software that
triggers the hardware behavior. This principle guided
several research works that appeared in the last decade.

Acta Electrotechnica et Informatica, Vol. 18, No. 1, 2018 23

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Studies have shown that the energy consumption of a
software system can be significantly influenced by a lot of
factors. Such factors can be software development related,
such as code obfuscation [20], different design patterns or
coding practices [1, 8, 11, 18], refactorings [19], and even
the usage of different data structures [12, 16]. Even in
software testing the decisions made can influence the
overall energy consumption at the testing phase [10].

With the propagation and mass usage of mobile
devices, the energy consumption issue became even more
relevant. This is due to the fact that mobile devices run
over batteries with limited capacity. Motivated by this,
several research works focused on providing information
about the energy consumption of applications. Some of
them were able to monitor the consumption per
application [4, 7, 27, 28], or even compare different
usages of similar applications [6], while others tried to
determine the energy consumed by blocks of code, such as
methods [2, 3], lines of code [9] or even bytecode
instructions [5].

Most of the works in this are based on energy models:
a prediction model able to determine the energy
consumption by matching information retrieved from
hardware components to previously determined
measurements [13, 14, 15, 28].

5. CONCLUSIONS

In this paper we discussed two common Android
coding practices and how such practices influence energy
consumption. We showed that the use of the StringBuilder
class to manipulate strings and the use of a cache when
loading images from internet are more energy efficient
than the use of standard string operations and non-cache
based approaches. We have presented examples of
equivalent Java programs that use (not use) standard
strings (cache images), and we have measured the energy
consumption of both solutions when executed on a
smartphone running Android. Our preliminary results
show a maximum energy saving of 50%.

To generalize our results, we proved a part of energy
saving practices to be adequate to their aim. But, what is
more important, these results imply that the code base can
be optimized to save energy of working software running
on Android but other platforms as well.

The ultimate goal of identifying energy (in)efficient
coding practices is a first step towards developing a full
catalog of coding practices for guiding software engineers
in developing energy-aware software. Thus, as future
research we plan to not only extend our coding practices,
with other coding practices found in literature, namely,

 the use of coding practices that are proposed in
the official Android developers web site: network
usage, memory consumption, and low-level
programming practices that were studied in [8],

 the use of the most energy efficient collections
that are part of Java Collections Framework
library [12, 16].

The newest version of the Java programming language

includes Streams that provide a powerful mechanism to
define methods that traverse data structures. Streams
provide a coding practice widely used by functional

programmers. As future work we plan to study how such
(functional) coding practices influence energy
consumption in Android.

ACKNOWLEDGMENT

This work is funded by the Slovak Research and
Development Agency under the contract No. SK-PT-
2015-0037 and by the Portugal-Slovakia Cooperation FCT
Project (Ref. 441), and by the ERDF – European Regional
Development Fund through the Operational Programme
for Competitiveness and Internationalisation - COMPETE
2020 Programme and by National Funds through the
Portuguese funding agency, FCT – Fundacão para a
Ciência e a Tecnologia within project POCI-01-0145-
FEDER-016718.

REFERENCES

[1] BRANDOLESE, C. – FORNACIARI, W. –
SALICE, F. – SCIUTO, D.: The impact of source
code transformations on software power and energy
consumption, Journal of Circuits, Systems, and
Computers, Vol. 11, No. 5, pp. 477–502, 2002.

[2] COUTO, M. – CUNHA, J. – FERNANDES, J. P. –
PEREIRA, R. – SARAIVA, J.: Greendroid: A tool
for analysing power consumption in the android
ecosystem, in Scientific Conference on Informatics,
2015 IEEE 13th International, Nov 2015, pp. 73–78.

[3] COUTO, M. – TIAGO, C. – CUNHA, J. –
FERNANDES, J. P. – SARAIVA, J.: Detecting
anomalous energy consumption in android
applications, in Programming Languages, ser.
Lecture Notes in Computer Science, F. M. Quintão
Pereira, Ed. Springer International Publishing, 2014,
Vol. 8771, pp. 77–91.

[4] FLINN, J. – SATYANARAYANAN, M.:
Powerscope: A tool for profiling the energy usage of
mobile applications, in Proc. of the Second IEEE
Workshop on Mobile Computer Systems and
Applications, ser. WMCSA’99, IEEE Computer
Society, 1999.

[5] HAO, S. – LI, D. – HALFOND, W. – GOVINDAN,
R.: Estimating android applications’ cpu energy
usage via bytecode profiling, in Green and
Sustainable Software (GREENS), 2012 First
International Workshop on, June 2012, pp. 1–7.

[6] JABBARVAND, R. – SADEGHI, A. – GARCIA, J.
– MALEK, S. – AMMANN, P.: Ecodroid: An
approach for energy-based ranking of android apps,
in Proc. of the Fourth International Workshop on
Green and Sustainable Software, ser. GREENS ’15,
IEEE Press, 2015, pp. 8–14.

[7] KJÆRGAARD, M. – BLUNCK, H.: Unsupervised
power profiling for mobile devices, in Mobile and
Ubiquitous Systems: Computing, Networking, and
Services, ser. Lecture Notes of the Institute for
Computer Sciences, Social Informatics and
Telecommunications Engineering, A. Puiatti and T.

24 Towards Energy-Aware Coding Practices for Android

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Gu, Eds. Springer Berlin Heidelberg, 2012, Vol. 104,
pp. 138–149.

[8] LI, D. – HALFOND, W. G. J.: An investigation into
energy-saving programming practices for android
smartphone app development, in Proc. of the 3rd
International Workshop on Green and Sustainable
Software, ser. GREENS 2014, ACM, 2014, pp. 46–
53.

[9] LI, D. – HAO, S. – HALFOND, W. G. J. –
GOVINDAN, R.: Calculating source line level
energy information for android applications, in Proc.
of the 2013 International Symposium on Software
Testing and Analysis, ser. ISSTA 2013, ACM, 2013,
pp. 78–89.

[10] LI, D. – JIN, Y. – SAHIN, C. – CLAUSE, J. –
HALFOND, W. G. J.: Integrated energy-directed test
suite optimization, in Proc. of the 2014 International
Symposium on Software Testing and Analysis, ser.
ISSTA 2014, ACM, 2014, pp. 339–350.

[11] LINARES-VÁSQUEZ, M. – BAVOTA, G. –
BERNAL-CÁRDENAS, C. – OLIVETO, R. – DI
PENTA, M. – POSHYVANYK, D.: Mining energy-
greedy api usage patterns in android apps: An
empirical study, in Proc. of the 11th Working
Conference on Mining Software Repositories, ser.
MSR 2014, ACM, 2014, pp. 2–11.

[12] LIU, K. – PINTO, G. – LIU, Y. D.: Data-oriented
characterization of application-level energy
optimization, in Fundamental Approaches to
Software Engineering, ser. Lecture Notes in
Computer Science, A. Egyed and I. Schaefer, Eds.,
Springer Berlin Heidelberg, 2015, Vol. 9033, pp.
316–331.

[13] NAKAJIMA, S.: Model-based power consumption
analysis of smartphone applications, in 16th
International Conference on Model Driven
Engineering Languages and Systems (MoDELS
2013), Miami, Florida, USA, September 29th, 2013.

[14] NAKAJIMA, S.: Model checking of energy
consumption behavior, in Complex Systems Design
& Management Asia, M.-A. Cardin, D. Krob, P. C.
Lui, Y. H. Tan, and K. Wood, Eds. Springer
International Publishing, 2015, pp. 3–14.

[15] PATHAK, A. – HU, Y. C. – ZHANG, M. – BAHL,
P. – WANG, Y.-M.: Fine-grained power modeling
for smartphones using system call tracing, in Proc. of
the Sixth Conference on Computer Systems, ser.
EuroSys ’11, ACM, 2011, pp. 153–168.

[16] PEREIRA, R. – COUTO, M. – SARAIVA, J. –
CUNHA, J. – FERNANDES, J. P.: The influence of
the java collection framework on overall energy
consumption, in Proc. of the 5th International
Workshop on Green and Sustainable Software, ser.
GREENS ’16, ACM, 2016, pp. 15–21.

[17] PINTO, G. – CASTOR, F. – LIU, Y. D.: Mining
questions about software energy consumption, in

Proc. of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014, ACM, 2014,
pp. 22–31.

[18] SAHIN, C. – CAYCI, F. – GUTIERREZ, I. L. M. –
CLAUSE, J. – KIAMILEV, F. – POLLOCK, L. –
WINBLADH, K.: Initial explorations on design
pattern energy usage, in Green and Sustainable
Software (GREENS), 2012 First International
Workshop on. IEEE, 2012, pp. 55–61.

[19] SAHIN, C. – POLLOCK, L. – CLAUSE, J.: How do
code refactorings affect energy usage?, in Proc. of
the 8th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement,
ser. ESEM ’14, ACM, 2014, pp. 36:1–36:10.

[20] SAHIN, C. – TORNQUIST, P. – MCKENNA, R. –
PEARSON, Z. – CLAUSE, J.: How does code
obfuscation impact energy usage?, in Proc. of the
2014 IEEE International Conference on Software
Maintenance and Evolution, ser. ICSME ’14, IEEE
Computer Society, 2014, pp. 131–140.

[21] SANTOS, M. – SARAIVA, J. – PORKOLÁB, Z. –
KRUPP, D.: Energy Consumption Measurement of
C/C++ Programs Using Clang Tooling, Z. Budimac
(ed.): Proceedings of the SQAMIA 2017: 6th
Workshop of Software Quality, Analysis, Monitoring,
Improvement, and Applications, Belgrade, Serbia,
11-13.9.2017, Paper No. 15, 8 pages, Also published
online by CEUR Workshop Proceedings No. 1938
(http://ceur-ws.org) ISSN 1613-0073.

[22] ŠIMOŇÁK, S.: Formal methods transformation
optimizations within the ACP2PETRI tool, Acta
Electrotechnica et Informatica, Vol. 6, No. 1, 2006,
pp. 75–80, ISSN 1335-8243.

[23] ŠIMOŇÁK, S. – HUDÁK, Š. – KOREČKO, Š.:
APC semantics for Petri nets, Informatica, Vol. 32,
No. 3, 2008, pp. 253–260, ISSN 0350-5596.

[24] ŠIMOŇÁK, S. – PEŤKO, I.: Patool – a tool for
design and analysis of discrete systems using process
algebras with FDT integration support, Acta
Electrotechnica et Informatica, Vol. 10, No. 1, 2010,
pp. 59–67, ISSN 1335-8243.

[25] ŠIMOŇÁK, S. – ŠOLC, M.: Enhancing Formal
Methods Integration with ACP2Petri, Journal of
Information and Organizational Sciences, Vol. 40,
No. 2 (2016), pp. 221–235, ISSN 1846-9418.

[26] SZABÓ, Cs. – SARAIVA, J.: Focusing software
engineering education on green application
development, Conference of Information Technology
and Development of Education - ITRO 2017, Novy
Sad, Serbia, pp. 165–169, ISBN 978-86-7672-302-7.

[27] YOON, C. – KIM, D. – JUNG, W. – KANG, C. –
CHA, H.: Appscope: Application energy metering
framework for android smartphone using kernel
activity monitoring, in Presented as part of the 2012
USENIX Annual Technical Conference (USENIX
ATC 12), USENIX, 2012, pp. 387–400.

Acta Electrotechnica et Informatica, Vol. 18, No. 1, 2018 25

ISSN 1335-8243 (print) © 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

[28] ZHANG, L. – TIWANA, B. – QIAN, Z. – WANG,
Z. – DICK, R. P. – MAO, Z. M. – YANG, L.:
Accurate online power estimation and automatic
battery behavior based power model generation for
smartphones, in Proc. of the Eighth IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, ser. CODES/ISSS
’10, ACM, 2010, pp. 105–114.

Received October 25, 2017, accepted March 8, 2018

BIOGRAPHIES

João Saraiva is an Auxiliar Professor at the Departmento
de Informática, Universidade do Minho, Braga, Portugal,
and a researcher member of HASLab/INESC TEC.He
obtained a MSc degree from University do Minho in 1993
and a Ph.D. degree in Computer Science from Utrecht
University in 1999. His main research contributions have
been in the field of programming languages design and
implementation, program analysis and transformation, and
functional programming. In the last 4 years he turned his
attention to energy consumption analysis in software, and
managed to obtain already several accepted papers in the
area, and a few research projects. He supervised 4
PostDoc projects, 7 PhD projects (5 awarded and 3
running) and over 20 (Pos-Bologna) MSc thesis. He
counts with over 60 international publications, he has
served in over 50 program committees of international
events, and in the evaluation committees of 5 research
agencies: ANII (Uruguay), FRS-FNRS (Belgium), NWO
(The Netherlands), FWF (Austria), and FCT (Portugal).

Marco Couto completed his MsC degree in Informatics
Engineering in 2014, with a thesis entitled “Monitoring

Energy Consumption in Android Applications”, with a
scholarship in a project called GreenSSCM – Green
Software for Space Control Missions, at the University of
Minho. He is also one of the members and co-founder of
the Green Software Lab, at University of Minho.
Currently, he is working on his PhD, being a student in
the MAP-i doctoral program, and is still working on the
energy consumption analysis and energy-aware software
areas. In the last years, he managed to publish several of
his energy analysis related works, and has been involved
in several research projects, financed from several
institutions such as FCT (Portugal) and FLAD-NSF
(Portugal/United States of America).

Csaba Szabó graduated (MSc.) with distinction at the
Dept. of Computers and Informatics in 2003 and obtained
his PhD. in Program- and Information Systems at the
FEEaI at Technical University of Košice in 2007. Since
2006 he is affiliated as assistant professor with the Dept.
of Computers and Informatics. Currently he is involved in
research in the field of behavioral description of software,
software and test evolution, and testing and evaluation of
software. In the last years, he has been involved in
different positions of research projects financed by
different agencies such as APVV (Slovakia-Austria,
Slovakia-Portugal), KEGA, VEGA (both Slovakia).

Dávid Novák joined the research on green software in
2015, in the second year of his Bachelors’ studies. He
defended his final thesis entitled “Green Software
Development for the Android Platform” at the department
of Computers and Informatics of the Faculty of Electrical
Engineering and Informatics at Technical University of
Košice in June 2016. He was a member of the joint
APVV/FCT project Slovakia-Portugal. He is working as
frontend/backend developer at Hellephant company.

