Published

2018-01-01

Research of behaviors of continuous GNSS station by signal analysis methods

Investigación de comportamientos en una estación con el Sistema Satelital de Navegación Global continua a través de métodos de análisis de señales

DOI:

https://doi.org/10.15446/esrj.v22n1.62552

Keywords:

CORS-TR, GNSS, Wavelet Analysis, Tectonic Plate, Power Spectrum, (en)
Estaciones de referencia de operación continua, Sistema Satelital de Navegación Global, Transformación por Ondiculas, placas tectónicas, espectro de energía, (es)

Downloads

Authors

  • Osman Oktar University of Aksaray
  • Hediye Erdoğan Aksaray University

Continuously Operating Reference Station (CORS) networks consisting of multiple GNSS systems have been set up and operating in many developed countries. In Turkey, CORS-TR has been operating. The aim of CORS-TR is a fast, correct, and reliable collection of all kinds of geographic data, thus, speeding up the activities of cadastre, assuring organized urbanization, constituting the spatial infrastructure for relevant works of e-government, and monitoring plate tectonics. Therefore, in this paper, we investigated 788 days of linear and periodic of AKHR, BEYS, CIHA, KAMN, YUNA, AKSI and KNYA CORS-TR stations by linear trend analysis and Wavelet Transform in located in the Central Anatolia Region of Turkey. As a result of trend analyses of time series, it was determined that except a single station (KAMN), other stations were moving in the Southwest direction (17.78 mm/year). This finding is consistent with the region’s tectonic plate movements. In the periodical analyses, stations’ daily, monthly, seasonal, annual and even biennial movements resulting from atmospheric and hydrologic loading, climatic and other effects were revealed. Moreover, Detail (D) component, which protects the largest percentage of energy, was determined by calculating the energy spectrum. Energies of detail components are similar in horizontal, and especially D7-D8 have the highest energy. However, the components obtained the maximum energy was varied in Up coordinate time series. These results indicate that stations of CORS-TR network located in Central Anatolia were rather stable and able to be providing reliable, accurate and continuous data for national and international studies to be conducted in many fields.

Las redes de Estaciones de Referencia de Operación Continua (CORS) conformadas por el Sistema Satelital de Navegación Global (GNSS) se han establecido y están operando en muchos países desarrollados. En Turquía este proyecto se conoce como CORS-TR y tiene el objetivo de hacer una recopilación rápida, correcta y confiable de todo tipo de información geográfica, y por lo tanto de agilizar la actividades de catastro, garantizar la urbanización organizada, constituir la infraestructura espacial de los trabajos relevantes de gobierno electrónico y monitorizar las placas tectónicas. Además, en este artículo se analizó la información lineal y periódica durante 788 días en las estaciones AKHR, BEYS, CIHA, KAMN, YUNA, AKSI y KNYA a través del Análisis de Tendencia Lineal y el método de Transformación por Ondículas para la Región Central de Anatolia en Turquía. A través del análisis de tendencias en series de tiempo se determinó que, excepto KAMN, todas las estaciones se movieron en la dirección suroccidente (17.78 mm/año). Este hallazgo es consistente con los movimientos de las placas tectónicas de la región. En los análisis periódicos se revelaron entre otros los efectos climáticos a partir de los movimientos diarios, mensuales, estacionales, anuales e incluso bianuales de las estaciones por la carga atmosférica e hidrológica. Además, el componente Detalle (D), que consiste en el mayor porcentaje de energía, se determinó al calcular el espectro de energía. Las energías de los componentes detallados son similares en su forma horizontal y especialmente el D7 y el D8 tienen el mayor nivel de energía. Sin embargo, los componentes que obtuvieron la máxima energía son diferentes en las coordenadas de las series de tiempo. Estos resultados indican que las estaciones de la red CORS-TR en Anatolia Central son estables y pueden proveer información confiable, exacta y continua para estudios nacionales e internacionales en las áreas de conocimiento relacionadas. 

References

Ahmed, F. (2010). Evaluation of GNSS as a tool for monitoring tropospheric water vapour. MSc thesis, Department of Earth and Space Sciences, Chalmers University of Technology, Göteborg, Sweden.

Allen, R. L. & Mills, D. W. (2004). Signal Analysis, Time, Frequency, Scale, and Structure. IEEE Press, USA.

Bastos, L., Osorio, J., Landau, H., & Hein, G. (1991). The Azores GPS Network, Arquipélago. Journal of Life and Earth Science, 9, 1–9.

Blewitt, G., & Lavallée, D. (2002). Effect of annual signals on geodetic velocity. Journal of Geophysical Research, 107, 2145.

Bos, M. S., Bastos, L., & Fernandes, R. M. S. (2010). The influence of seasonal signals on the estimation of the tectonic motion in short continuous GPS time-series, Journal of Geodynamics, 49, 205–209.

Calais, E. (1999). Continuous GPS Measurements Across the Western Alps, 1996-1998. Geophysical Journal International, 138(1), 221–230.

Dong, D., Fang, P., Bock, Y., Cheng, M. K. & Miyazaka, S. (2002). Anatomy of apparent seasonal variation from GPS-derived site position. Journal of Geophysical Research, 107.

Erdoğan, H. & Gülal, E. (2009). The Application of Time Series Analysis to Describe the Dynamic Movements of Suspension Bridges. Nonlinear Analysis: Real World Applications, 10, 910-927.

Erdogan, S., Sahin, M., Tiryakioglu, I., Gülal, E., & Telli, A. K. (2009). GPS velocity and strain rate fields in Southwest Anatolia from repeated GPS measurements. Sensors, 9(3), 2017–2034.

Eren, K., Uzel, T., Gülal, E., Yıldırim, O. & Cingoz, A. (2009). Results from a comprehensive GNSS test in the CORS-TR Network: Case Study. Journal of Surveying Engineering, 1-10.

Gilbert, L. E., Kastend, K., Hurst, K., Paradissis, D., Veis, G., Billiris, H., Hoeppe, W. & Schlueter, W. (1994). Strain results and tectonics from the Aegean GPS experiment. Eos, Transactions, American Geophysical Union, 75(16).

Gülal, E., Tiryakioğlu, İ., Erdoğan, S., Aykut, N. O., Baybura, T., Akpinar, B., Telli, A. K., Ata, E., Gümüş, K., Taktak, F., Yilmaz, İ., Öcalan, T., Kalyoncuoğlu, Ü. Y., Dolmaz, M. N., Elitok, Ö. , Erdoğan, H. & Soycan, M. (2013). Tectonic activity inferred from velocity field of GNSS measurements in Southwest of Turkey. Acta Geodaetica et Geophysica, 48(2), 109–121.

Gülal, E., Erdoğan, H., & Tiryakioğlu, İ. (2013). Research on the stability analysis of GNSS reference stations network by time series analysis. Elsevier, 13(8), 1945-1957.

Kahle, H. G., Muller, M. V. & Veis, G. (1996). Trajectories of crustal deformation of western Greece from GPS observations 1989–1994. Geophysical Research Letters, 23, 677–680.

Kellogg, J. N., & Dixon, T. H. (1990). Central and South America GPS geodesy – CASA UNO, Geophysical Research Letters, 17 (3),195–198.

Larsen, S. & Reilinger, R. (1992). Global Positioning System measurements of strain accumulation across the Imperial Valley, California: 1986– 1989. Journal of Geophysical Research, 97(B4), 8865–8876.

Mao, A., Harrison, C. G. A., & Dixon, T. H. (1999). Noise in GPS Coordinate Time Series. Journal of Geophysical Research, 104(B2), 2797–2818.

McClusky, S., Bassalanian, A. B., Demir, C., Ergintav, S., Georgiev, I., Gurkan, O., Hamburger, M., Hurst, K., Hans-Gert, H. G., Karstens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., Mahmoud, S., Mishin, A., Nadariya, M., Ouzounis, A., Paradissis, D., Peter, Y., Prilepin, M., Relinger, R., Sanli, I., Seeger, H., Tealeb, A., Toksoz, M.N., & Veis, G. (2000). Global Positioning System constraints on plate kinematics and Dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105(B3), 5695–5719.

Miller, M. M., Melbourne, T., Johnson, D. J. & Sumner, W. Q. (2002). Periodic Slow Earthquakes from the Cascadia Subduction Zone. Science, 295, 5564, 2423.

Misiti, M., Misiti, Y., Oppenheim, Y. & Poggi, J. (2002). “Wavlet toolbox user’s guide the matworks”, Inc.

Miyazaki, S., Tsuji, H., Hatanaka, Y., Abe, Y., Yoshimura, A., Kamada, K., Kobayashi, K., Morishita, H., & Limura, Y. (1996). Establishment of the nationwide GPS array (GRAPES) and its initial results on the crustal deformation of Japan. Bulletin of the Geographycal Survey Institute, Japan. 42, 27–41.

Morlet, J., Arens, G., Fourgeau, E., & Giard, D. (1982). Wave propagation and sampling theory, 1, Complex signal and scattering in multilayered media. Geophysics, 47(2), 203–221.

Pany, T. (2007). Navigation signal processing for GNSS software receivers. Artech House, Boston.

Peter, Y., Kahle, H.G., Cocard, M., Veis, G., Felekis, S. & Paradissis, D. (1998). Establishment of a permanent GPS network across the Kephalonia fault zone Ionian, Greece. Tectonophysics, 294, 253–260.

Poutanen, M., Koivula, H., & Ollikainen, M. (2001). On the Periodicity of GPS Time Series, Proceedings of the IAG 2001 Scientific Assembly, Vistas for Geodesy in the New Millennium. Budapest, Hungary, 2-7, p.4.

Qiao, F. (2005). Introduction to wavelet. A Tutorial in Workshop on Wavelet Application in Transportation Engineering. Texas Southern University. Reilinger, R. (1997). Global Positioning System measurements of present-day crustal movements in the Arabia–Africa–Eurasia plate collision zone.

Journal of Geophysical Research, 102, 9983–9999.

Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O., & Sanli, I. (1997). Global Positioning System measurements of present-day crustal movements in the Arabia–Africa– Eurasia plate collision zone. Journal of Geophysical Research, 102(B5), 9983–9999.

Romagnoli, C., Zerbini, S., Lago, L., Richter, B., Simon, D., Domenichini, F., Elmi, C., & Ghirotti, M. (2003). Influence of soil consolidation and thermal expansion effects on height and gravity variations. Journal of Geodynamics, 35(4–5), 521–539.

Satellite Navigation: http://en.wikipedia.org/wiki/Satellite_navigation/, 2016 (last accessed may 2016).

Scherneck, H. G., Johansson, J. M., Mitrovica, J. X., & Davies, J. L. (1998). The BIFROST project: GPS determined 3-D displacement rates in Fennoscandia from 800 days of continuous observations in the SWEPOS network. Tectonophysics, 294(3–4), 305–321.

Straub, C. & Kahle, H. G. (1995). Active crustal deformation in the Marmara Sea region, NW Anatolia, inferred from GPS measurements. Geophysical Research Letters, 22, 2533–2536.

Straub, C., Kahle, H. G. & Schindler, C. (1997). GPS and geologic estimates of the tectonic activity in the Marmara sea region, NW Anatolia. Journal of Geophysical Research, 102, 27587–27601.

Van Dam, T. M., Wahr, J., & Chao, Y., Leuliette, E. (1997). Predictions of crustal deformation and of geoid and sea-level variability caused by oceanic and atmospheric loading. Geophysical Journal International, 129, 507–517.

Van Dam, Wahr, T. J., Milly, P. C. D., Shmakin, A. B., Blewitt, G., Lavallée, D., & Larson, K. M. (2001). Crustal displacements due to continental water loading. Geophysical Research Letters, 28, 651–654.

How to Cite

APA

Oktar, O. and Erdoğan, H. (2018). Research of behaviors of continuous GNSS station by signal analysis methods. Earth Sciences Research Journal, 22(1), 19–27. https://doi.org/10.15446/esrj.v22n1.62552

ACM

[1]
Oktar, O. and Erdoğan, H. 2018. Research of behaviors of continuous GNSS station by signal analysis methods. Earth Sciences Research Journal. 22, 1 (Jan. 2018), 19–27. DOI:https://doi.org/10.15446/esrj.v22n1.62552.

ACS

(1)
Oktar, O.; Erdoğan, H. Research of behaviors of continuous GNSS station by signal analysis methods. Earth sci. res. j. 2018, 22, 19-27.

ABNT

OKTAR, O.; ERDOĞAN, H. Research of behaviors of continuous GNSS station by signal analysis methods. Earth Sciences Research Journal, [S. l.], v. 22, n. 1, p. 19–27, 2018. DOI: 10.15446/esrj.v22n1.62552. Disponível em: https://revistas.unal.edu.co/index.php/esrj/article/view/62552. Acesso em: 19 may. 2024.

Chicago

Oktar, Osman, and Hediye Erdoğan. 2018. “Research of behaviors of continuous GNSS station by signal analysis methods”. Earth Sciences Research Journal 22 (1):19-27. https://doi.org/10.15446/esrj.v22n1.62552.

Harvard

Oktar, O. and Erdoğan, H. (2018) “Research of behaviors of continuous GNSS station by signal analysis methods”, Earth Sciences Research Journal, 22(1), pp. 19–27. doi: 10.15446/esrj.v22n1.62552.

IEEE

[1]
O. Oktar and H. Erdoğan, “Research of behaviors of continuous GNSS station by signal analysis methods”, Earth sci. res. j., vol. 22, no. 1, pp. 19–27, Jan. 2018.

MLA

Oktar, O., and H. Erdoğan. “Research of behaviors of continuous GNSS station by signal analysis methods”. Earth Sciences Research Journal, vol. 22, no. 1, Jan. 2018, pp. 19-27, doi:10.15446/esrj.v22n1.62552.

Turabian

Oktar, Osman, and Hediye Erdoğan. “Research of behaviors of continuous GNSS station by signal analysis methods”. Earth Sciences Research Journal 22, no. 1 (January 1, 2018): 19–27. Accessed May 19, 2024. https://revistas.unal.edu.co/index.php/esrj/article/view/62552.

Vancouver

1.
Oktar O, Erdoğan H. Research of behaviors of continuous GNSS station by signal analysis methods. Earth sci. res. j. [Internet]. 2018 Jan. 1 [cited 2024 May 19];22(1):19-27. Available from: https://revistas.unal.edu.co/index.php/esrj/article/view/62552

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Abdulmalek REDHWAN, Hediye ERDOĞAN, Osman OKTAR, Cemil GEZGİN. (2021). Monitoring of continuous GNSS stations at Central Anatolia region. Turkish Journal of Geosciences, 2(2), p.21. https://doi.org/10.48053/turkgeo.996719.

2. H. Erdogan, O. Oktar, Cemil Gezgin, F. Poyraz, N. Arslan, F. Yilmazturk. (2022). Investigating the effects of groundwater level changes on GNSS observations in the Konya Closed Basin. Earth Sciences Research Journal, 25(4), p.405. https://doi.org/10.15446/esrj.v25n4.92490.

3. Şeyma Şafak, İbrahim Tiryakioğlu, Hediye Erdoğan, Halil İbrahim Solak, Bahadır Aktuğ. (2020). Determination of parameters affecting the accuracy of GNSS station velocities. Measurement, 164, p.108003. https://doi.org/10.1016/j.measurement.2020.108003.

4. Cemil GEZGİN, İbrahim TİRYAKİOĞLU, Semih EKERCİN, Esra GÜRBÜZ. (2020). Tuz Gölü Fay Zonu (TGFZ) Güney Kesimine ait Tektonik Hareketlerin GNSS Gözlemleri ile İzlenmesi. Afyon Kocatepe University Journal of Sciences and Engineering, 20(3), p.456. https://doi.org/10.35414/akufemubid.690886.

5. Mehmet Bak, Rahmi Nurhan Çeli̇k. (2023). Web-NDefA: Open-source and web-based online platform for 3-D deformation analysis of geodetic networks. SoftwareX, 24, p.101523. https://doi.org/10.1016/j.softx.2023.101523.

Dimensions

PlumX

Article abstract page views

559

Downloads

Download data is not yet available.