Published

2017-01-01

Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]

Organogénesis in-vitro usando tres tipos de tejidos de tomate de árbol [ Solanum betaceum (Cav.)]

DOI:

https://doi.org/10.15446/agron.colomb.v35n1.61330

Keywords:

Clonal propagation, plant regeneration, shoot induction, tamarillo, tissue culture (en)
Propagación clonal, inducción de brotes, tamarillo, cultivo de tejidos, fitohormonas (es)

Downloads

Authors

  • Paola Andrea Murillo-Gómez Universidad Nacional de Colombia - Sede Medellín
  • Rodrigo Hoyos S Universidad Nacional de Colombia - Sede Medellín
  • Paul Chavarriaga International Center for Tropical Agriculture (CIAT)
Tree tomato is a fruit with great economic potential due to its high nutritional value. The induction of direct organogenesis in this species is a great alternative for clonal propagation of disease-free plants, and also useful for genetic transformation. In this study was assessed the induction of organogenesis in vitro using three different tissues: leaves, petioles and sexual seeds of the variety Common. All tissues were cultured on MS supplemented with agar, sucrose and TDZ or BAP phytohormones at 0.5 to 3 mg L-1, combined or not with the auxins IAA and NAA. Although petioles and seeds had a great potential for regeneration of plantlets, leaves produced more shoots (average of 18.4 shoots/explant) on medium containing TDZ 0.5 mg L-1. Additionally, its easy handling and resistance to physical damage may be useful traits to perform genetic trans-formation. The highest average of shoots produced from seeds and petioles were 4.3 and 3.1 shoots/explant, respectively. The production of multiple shoots in petioles was influenced by low concentrations of auxins. The emergence of the radicle in the seeds was important for the formation of shoots.

El tomate de árbol es un frutal con gran potencial económico debido a su alto valor nutricional. La inducción de organogénesis directa en esta especie presenta una gran alternativa para la propagación clonal de plantas libres de enfermedades, y también es útil para transformación genética. En este estudio fue evaluada inducción de organogénesis in vitro utilizando tres diferentes tejidos: hojas, pecíolos y semillas sexuales, de la variedad Común. Todos los tejidos se cultivaron en MS suplementado con agar, sacarosa y las fitohormonas TDZ o BAP de 0.5 a 3 mg L-1, combinadas o no con las auxinas AIA y ANA. Aunque los pecíolos y las semillas tuvieron un gran potencial para la regeneración de plántulas, las hojas produjeron más número de brotes (promedio de 18.4 brotes/explante) en medio que contenía TDZ 0.5 mg L-1. Además, su fácil manejo y resistencia al daño físico pueden ser rasgos útiles para realizar transformación genética. El promedio más alto de brotes producidos a partir de semillas y pecíolos fue de 4.3 y 3.1 brotes/ explante, respectivamente. La producción de brotes múltiples en pecíolos fue influenciada por bajas concentraciones de auxinas. La emergencia de la radícula en las semillas fue importante en la formación de brotes.

References

Agronet. 2016. Anuario estadístico del sector agropecuario (base agrícola EVA 2007-2015. In: http://www.agronet.gov.co; consulted: June 2016.

Alvarez, J. 2016. Personal communication of this fruit grower. Atkinson, R.G. and R.C. Gardner. 1993. Regeneration of transgenic tamarillo plants. Plant Cell Rep. 12, 347-351. Doi: 10.1007/BF00237433

Bello-Bello, J., L. Iglesias-Andreu, L. Sánchez-Velásquez, J. Casas-Martínez, and Santana-Buzzy N. In vitro regeneration of Pinus brutia Ten. var. Eldarica (Medw.) through organogenesis. 2012. Afr. J. Biotechnol. 11(93), 15982-15987. Doi: 10.5897/AJB12.2180

Bonnet, JG. and J.F. Cárdenas. 2012. Tomate de árbol (Cyphomandra betacea Sendt.). pp. 825-850. In: Fischer, G. (ed.). Manual para el cultivo de frutales en el trópico. Produmedios, Bogota, Colombia.

Cerón, I., J. Higuita, and C. Cardona. 2011. Capacidad antioxidante y contenido fenólico total en tres frutas cultivadas en la región andina. Vector 5, 17-26.

Chacón-Cerdas, R., D. Flores-Mora, L. Alvarado-Marchena, A. Schmidt-Durán, and C. Alvarado-Ulloa. 2013. In vitro culture of Tamarillo (Cyphomandra betacea (Cav.)) Sendt. (Orange phenotype) from Costa Rica. Tecnol. Marcha 6, 45-55

Correia, S.I. and J.M. Canhoto. 2012. Biotechnology of tamarillo (Cyphomandra betacea): From in vitro cloning to genetic transformation. Sci. Hortic. 148, 161-168. Doi: 10.1016/j.scienta.2012.09.037

Correia, S.I., L. Lopes, and J.M. Canhoto. 2011. Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt (tamarillo). Trees 25, 1009-1020. Doi: 10.1007/s00468-011-0575-5

Hussain, A., I.A. Qarshi, H. Nazir, and I. Ullah. 2012. Plant tissue culture: Current status and opportunities. In: Recent advances in plant in vitro culture. Chapter 1. Intech. 27. Doi: 10.5772/50568

Kadir, N.A.A.A. A. Rahmat, and H.Z.E. Jaafar. 2015. Protective effects of tamarillo (Cyphomandra betacea) extract against high fat diet induced obesity in Sprague-Dawley rats. Hindawi Publishing Corporation. J. Obesity. 2015, 1-8. Doi: 10.1155/2015/846041

Kahia, J. 2015. A novel regeneration system for tamarillo (Cyphomandra betacea) via organogenesis from hypocotyl, leaf, and root explants. HortScience 50(9), 1375-1378

Kitimu, S.R., J. Taylor, T.J. March, F. Tairo, M.J. Wilkinson, C.MRodríguez-López. 2015. Meristem micropropagation of cassava (Manihot esculenta) evokes genome-wide changes in fpls.2015.00590

Malik, K.A., S.T. Ali-Khan, and P.K. Saxena. 1993. High-frecuency organogenesis from direct seed culture in Lathyrus. Ann. Bot. 72, 629-637. Doi: 10.1006/anbo.1993.1154

Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473-497. Doi: 10.1111/j.1399-3054.1962.tb08052.x

Obando, M., A. Goreux, and M. Jordan.1992. Regeneration in vitro de Cyphomandra betacea (tamarillo), an Andean fruit species. Cienc. Investig. Agr. 19, 125-130.

Obando, M. and M. Jordan. 2001. Regenerative responses of Cyphomandra betacea (Cav.) Sendt (tamarillo) cultivated in vitro. Acta Hortic. 560, 429-432. Doi: 10.17660/ActaHortic.2001.560.83

Pringle, G.J. and B.G. Murray. 1991. Interspecific hybridization involving the tamarillo Cyphomandra betacea (Cav.) Sendt. (Solanaceae). N. Z. J. Crop Hort. Sci. 19, 103-111. Doi: 10.1080/01140671.1991.10421787

Schotsmans, W.C., A. East, and A. Woolf. 2011. Tamarillo. pp. 427-441. In: Yahia, E.M. (ed.). Postharvest biology and technology of tropical and subtropical fruits. Vol. 4. Woodhead Publishing, Cambridge, UK. Doi: 10.1533/9780857092618.427

Tamayo, P.J. 2001. Principales enfermedades del tomate de árbol, la mora y el lulo en Colombia. Boletín Técnico 12. Corpoica, Regional 4. Centro de Investigación La Selva, Rionegro, Colombia.

Vasco, C., J. Avila, J. Ruales, U. Svanberg, and A. Kamal-Eldin. 2009. Physical and chemical characteristics of goldenyellow and purple-red varieties of tamarillo fruit (Solanum betaceum Cav.). Int. J. Food Sci. Nutr. 60, 278-288. Doi: 10.1080/09637480903099618

How to Cite

APA

Murillo-Gómez, P. A., Hoyos S, R. and Chavarriaga, P. (2017). Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]. Agronomía Colombiana, 35(1), 5–11. https://doi.org/10.15446/agron.colomb.v35n1.61330

ACM

[1]
Murillo-Gómez, P.A., Hoyos S, R. and Chavarriaga, P. 2017. Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]. Agronomía Colombiana. 35, 1 (Jan. 2017), 5–11. DOI:https://doi.org/10.15446/agron.colomb.v35n1.61330.

ACS

(1)
Murillo-Gómez, P. A.; Hoyos S, R.; Chavarriaga, P. Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]. Agron. Colomb. 2017, 35, 5-11.

ABNT

MURILLO-GÓMEZ, P. A.; HOYOS S, R.; CHAVARRIAGA, P. Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]. Agronomía Colombiana, [S. l.], v. 35, n. 1, p. 5–11, 2017. DOI: 10.15446/agron.colomb.v35n1.61330. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/61330. Acesso em: 31 may. 2024.

Chicago

Murillo-Gómez, Paola Andrea, Rodrigo Hoyos S, and Paul Chavarriaga. 2017. “Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]”. Agronomía Colombiana 35 (1):5-11. https://doi.org/10.15446/agron.colomb.v35n1.61330.

Harvard

Murillo-Gómez, P. A., Hoyos S, R. and Chavarriaga, P. (2017) “Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]”, Agronomía Colombiana, 35(1), pp. 5–11. doi: 10.15446/agron.colomb.v35n1.61330.

IEEE

[1]
P. A. Murillo-Gómez, R. Hoyos S, and P. Chavarriaga, “Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]”, Agron. Colomb., vol. 35, no. 1, pp. 5–11, Jan. 2017.

MLA

Murillo-Gómez, P. A., R. Hoyos S, and P. Chavarriaga. “Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]”. Agronomía Colombiana, vol. 35, no. 1, Jan. 2017, pp. 5-11, doi:10.15446/agron.colomb.v35n1.61330.

Turabian

Murillo-Gómez, Paola Andrea, Rodrigo Hoyos S, and Paul Chavarriaga. “Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]”. Agronomía Colombiana 35, no. 1 (January 1, 2017): 5–11. Accessed May 31, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/61330.

Vancouver

1.
Murillo-Gómez PA, Hoyos S R, Chavarriaga P. Organogénesis in-vitro using three tissues types of tree tomato [ Solanum betaceum (Cav.)]. Agron. Colomb. [Internet]. 2017 Jan. 1 [cited 2024 May 31];35(1):5-11. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/61330

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Maria F. Mideros, Hilary Mayton, Giovanna Danies, Luz E. Lagos, William E. Fry, Silvia Restrepo. (2020). Differential Susceptibility of Tree Tomato (Solanum betaceum) Cultivars to Late Blight Caused by Phytophthora betacei. Plant Disease, 104(4), p.1113. https://doi.org/10.1094/PDIS-02-19-0307-RE.

2. Mariana Neves, Sandra Correia, Jorge Canhoto. (2023). Ethylene Inhibition Reduces De Novo Shoot Organogenesis and Subsequent Plant Development from Leaf Explants of Solanum betaceum Cav.. Plants, 12(9), p.1854. https://doi.org/10.3390/plants12091854.

3. Alhagie K. Cham, Ma del Carmen Ojeda Zacarías, Héctor Lozoya Saldaña, Rigoberto E. Vázquez Alvarado, Emilio Olivares Sáenz, Omar Guadalupe Alvarado Gómez. (2024). Effects of Elicitation on Invitro Regeneration of two Tomato (Solanum lycopersicum L.) Cultivars in Tissue Culture. Journal of Experimental Biology and Agricultural Sciences, 12(1), p.106. https://doi.org/10.18006/2024.12(1).106.123.

4. K. S Salazar-Vega, I. Vaca,. (2021). Solanum betaceum in vitro seed germination and seedling development in response to pregerminative treatments. Bionatura, 6(1), p.1520. https://doi.org/10.21931/RB/2021.01.01.12.

5. Satish Kumar, Bharti Shree, Shweta Sharma, Ajay Sharma, Priyanka. (2024). Tree tomato: Underutilized vegetable for sustainable nutritional and economic security. Scientia Horticulturae, 327, p.112867. https://doi.org/10.1016/j.scienta.2024.112867.

Dimensions

PlumX

Article abstract page views

817

Downloads

Download data is not yet available.