IEEJ Transactions on Electronics, Information and Systems
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<Control and Measurement>
Design of Critical Control Systems for Non-Minimum Phase Plants via LTR Technique
Tadashi IshiharaTakahiko Ono
Author information
JOURNAL FREE ACCESS

2007 Volume 127 Issue 5 Pages 733-740

Details
Abstract

An application of the loop transfer recovery (LTR) technique to critical control systems design is proposed for non-minimum phase plants. The controller structure is chosen as the Davison type integral controller with the Kalman filter. First, a critical control system is designed on the assumption that the state of the minimum phase part of the plant can be used for the feedback. A quadratic performance index with tuning parameters is used for determining the partial state feedback gain matrix. Second, the Kalman filter gain matrix is determined such that the output feedback controller performs as in the partial state feedback controller. The formal partial loop recovery procedure using the Riccati equation is adopted for this purpose. The proposed design method requires much simpler numerical search than the conventional one-step approach. An illustrative design example is presented.

Content from these authors
© 2007 by the Institute of Electrical Engineers of Japan
Previous article Next article
feedback
Top