Funct. Mater. 2019; 26 (2): 262-266.

doi:https://doi.org/10.15407/fm26.02.262

Analysis of adsorption properties of magnetic composites: preparation of multi-walled carbon nanotubes

Chengwen Zhang

School of Electrical Engineering, Tongling University, Tongling, Anhui 244000, China

Abstract: 

Magnetic carbon nanotube composites have great adsorption performance and have been applied in many fields including sewage treatment and separation. In this study, the Multi-walled Carbon Nanotubes (MWCNTs) were taken as an example to analyze its absorption performance, and the magnetic MWCNTs composite was obtained by the preparation of Fe3O4 and SiO2 and combination with MWCNTs. The adsorption experiment of the magnetic MWCNTs composite was performed with Congo red (CR). The results showed that magnetic MWCNTs had great adsorption properties to CR, and its adsorption effects increased with the increase of the concentration and temperature of solution and was better under low pH value. The experimental results shows that the magnetic MWCNTs has good adsorption properties, which provides some theoretical support for its further application in sewage treatment.

Keywords: 
magnetic material, multi-walled carbon nanotube, adsorption performance, composite
References: 

1. M. A. Azam, F. M. Alias, L. W. Tack, et al., J. Mol. Graph. Model., 75, 85 (2017). https://doi.org/10.1016/j.jmgm.2017.05.003

2. L. Sun, W. Kong, M. Li, et al., Nanotechnology, 27, 075401 (2016). https://doi.org/10.1088/0957-4484/27/7/075401

3. W. Wang, C. Jiang, L. Zhu, et al., Int. J. Mol. Sci., 15, 15981 (2014). https://doi.org/10.3390/ijms150915981

4. Y. D. Lim, D. Grapov, L. Hu, et al., Nanotechnology, 29, 075205 (2017). https://doi.org/10.1088/1361-6528/aaa1bb

5. Y. Xie, C. He, L. Liu, et al., RSC Adv., 5, 82503 (2015). https://doi.org/10.1039/C5RA15626B

6. M. Inyang, B. Gao, A. Zimmerman, et al., Environ. Sci. Pollut. Res., 22, 1868 (2015). https://doi.org/10.1007/s11356-014-2740-z

7. P. Wang, M. Cao, C. Wang, et al., Appl. Surf. Sci., 290, 116 (2014). https://doi.org/10.1016/j.apsusc.2013.11.010

8. S. Yang, L. Wang, X. Zhang, et al., Chem. Eng. J., 275, 315 (2015). https://doi.org/10.1016/j.cej.2015.04.049

9. M. O. Ansari, R. Kumar, S. A. Ansari, et al., J. Colloid Interf. Sci., 496, 407 (2017). https://doi.org/10.1016/j.jcis.2017.02.034

10. H. Chen, Z. Chen, G. Zhao, et al., J. Hazard. Mater., 347, 67 (2017). https://doi.org/10.1016/j.jhazmat.2017.12.062

11. Y. Yang, L. Ge, V. Rudolph, Z. Zhu, Dalton Trans, 43, 7028 (2014). https://doi.org/10.1039/c3dt53191k

12. K. Nemeth, K. Nemeth, L. Kovacs, et al., J. Nanosci. Nanotechno., 17, 5445 (2017). https://doi.org/10.1166/jnn.2017.13803

13. S. S. Bayazit, Desalin. Water Treat., 52, 6966 (2014). https://doi.org/10.1080/19443994.2013.821045

14. D. L. Xiao, H. Li, H. He, et al., Carbon, 71, 343 (2014). https://doi.org/10.1016/j.carbon.2014.01.042

.

Current number: