Funct. Mater. 2016; 23 (3): 378-381.

http://dx.doi.org/10.15407/fm23.03.378

Inhomogeneity of dielectric properties of cadmium zinc-telluride crystals grown from melt

O.O.Poluboiarov1, O.N.Chugai2, O.O.Voloshin2, D.P.Zherebyatiev2, S.V.Oleynick2, S.V.Sulima1

1Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky., 61001 Kharkiv, Ukraine
2N.Zhukovsky Kharkiv National Aerospace University, 17 Chkalova Str., 61070 Kharkiv, Ukraine

Abstract: 

Dielectric properties of Cd1-xZnxTe crystals made from different ingot regions were investigated in a low-frequency region. Wavelet analysis was used for take-off of regular component in dependence of both parts of dielectric permittivity from spatial coordinate. It is ascertained that dielectric response of crystals has a relaxational character. Regular changes of response characteristics in ingot growth direction were revealed. Such peculiarities of properties are explained with changes during growth process not only in ratio of solid solution basic components, but also of intrinsic structure defects, especially related with cadmium vacancies.

Keywords: 
semiconductors solid solutions, CdZnTe crystal, native defects, dielectric permittivity.
References: 

1. O.N.Chugai, S.L.Abashin, A.V.Gaidachuk et al., Visnyk KhNU im. Karazina, seriya "Fizika", 1158, 13 (2015).
 
2. O.N.Chugai, S.L.Abashin, A.V.Gaidachuk et al., Inorg. Mat., 51, 972 (2015).
http://dx.doi.org/10.1134/S0020168515100052
 
3. C.Szeles, Phys. Stat. Sol. (b), 241, 783 (2004).
http://dx.doi.org/10.1002/pssb.200304296
 
4. J.E.Toney, B.A.Brunett, T.E.Schlesinger et al., Nucl. Instr. Meth. Phys. Res. A, 380, 132 (1996).
http://dx.doi.org/10.1016/S0168-9002(96)00373-7
 
5. T.E.Schlesinger, J.E.Toney, H.Yoon et al., Mater. Sci. Eng. R, 32, 103 (2001).
http://dx.doi.org/10.1016/S0927-796X(01)00027-4
 
6. Yu.V.Shaldin, I.Warchulska, M.Kh.Rabadanov, V.K.Komar', Semiconductors, 38, 288 (2004).
http://dx.doi.org/10.1134/1.1682329
 
7. M.Fiederle, A.Fauler, J.Konrath et al., IEEE Trans. Nucl. Sci., 5, 1864 (2003).
 
8. G.Li, X.Zhang, H.Hua, W.Jie., J. Electron. Mater., 34, 1215 (2005).
http://dx.doi.org/10.1007/s11664-005-0266-3
 
9. D.Berlincourt, H.Jaffe, and L.R.Shiozawa, Phys. Rev., 129, 1009 (1963).
http://dx.doi.org/10.1103/PhysRev.129.1009
 
10. I.Strzalkowski, S.Joshi, C.R.Crowell, App. Phys. Let., 28, 350 (1976).
http://dx.doi.org/10.1063/1.88755
 
11. M.Azoulay, S.Rotter,G.Gafni, M.Roth, J. Cryst. Growth, 116, 515 (1992).
http://dx.doi.org/10.1016/0022-0248(92)90662-3
 
12. Yu.M.Tairov, V.F.Tsvetkov, Tehnologiya Poluprovodnikovyh i Dielektricheskih Materialov, Vysshaya Skola, Moscow (1983) [in Russian].
 
13. V.K.Komar', V.P.Migal', D.P.Nalivaiko, O.N.Chugai, Inorg. Mat., 37, 449 (2001).
http://dx.doi.org/10.1023/A:1017512430316
 
14. Yu.M.Poplavko, Fizika dielektrikov. Vyshca Skola, Kyiv 1980) [in Russian].

Current number: