Skip to main content
Log in

Human T-Cell Leukemia Virus Type 1 Tax and Cellular Transformation

  • Progress in Hematology
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Infection of T-cells by human T-cell leukemia virus type 1 (HTLV-1) causes a lymphoproliferative malignancy known as adult T-cell leukemia (ATL). ATL is characterized by abnormal lymphocytes, calledflower cells, which have cleaved and convoluted nuclei. Tax, encoded by the HTLV-1 pX region, is a critical nonstructural protein that plays a central role in leuke-mogenesis; however, the mechanisms of HTLV-1 oncogenesis have not been clarified fully. In this review, we summarize current thinking on how Tax may affect ATL leukemogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hinuma Y, Nagata K, Hanaoka M, et al. Adult T-cell leukemia: antigen in an ATL cell line and detection of antibodies to the antigen in human sera.Proc Natl Acad Sci U S A. 1981;78:6476–6480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Takatsuki K. Discovery of adult T-cell leukemia.Retrovirology. 2005;2:16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gallo RC. The discovery of the first human retrovirus: HTLV-1 and HTLV-2.Retrovirology. 2005;2:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yoshida M. Discovery of HTLV-1, the first human retrovirus, its unique regulatory mechanisms, and insights into pathogenesis.Oncogene. 2005;24:5931–5937.

    Article  PubMed  CAS  Google Scholar 

  5. Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL).Retrovirology. 2005;2:27.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Matsuoka M, Jeang KT. Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation.Nat Rev Cancer. 2007;7:270–280.

    Article  PubMed  CAS  Google Scholar 

  7. Taylor GP, Matsuoka M. Natural history of adult T-cell leukemia/lymphoma and approaches to therapy.Oncogene. 2005;24:6047–6057.

    Article  PubMed  CAS  Google Scholar 

  8. Feuer G, Green PL. Comparative biology of human T-cell lym- photropic virus type 1 (HTLV-1) and HTLV-2.Oncogene. 2005;24:5996–6004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Albrecht B, Lairmore MD. Critical role of human T-lymphotropic virus type 1 accessory proteins in viral replication and pathogenesis.Microbiol Mol Biol Rev. 2002;66:396–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Tanaka A,Takahashi C, Yamaoka S, Nosaka T, Maki M, Hatanaka M. Oncogenic transformation by the tax gene of human T-cell leukemia virus type I in vitro.Proc Natl Acad Sci U S A. 1990;87:1071–1075.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Jeang KT, Giam CZ, Majone F, Aboud M. Life, death, and tax: role of HTLV-I oncoprotein in genetic instability and cellular transformation.J Biol Chem. 2004;279:31991–31994.

    Article  PubMed  CAS  Google Scholar 

  12. Kehn K, Berro R, de la Fuente C, et al. Mechanisms of HTLV-1 transformation.Front Biosci. 2004;9:2347–2372.

    Article  PubMed  CAS  Google Scholar 

  13. Grassmann R, Aboud M, Jeang KT. Molecular mechanisms of cellular transformation by HTLV-1 Tax.Oncogene. 2005;24:5976–5985.

    Article  PubMed  CAS  Google Scholar 

  14. Sun SC, Yamaoka S. Activation of NF-κB by HTLV-I and implications for cell transformation.Oncogene. 2005;24:5952–5964.

    Article  PubMed  CAS  Google Scholar 

  15. AkagiT, Ono H, Shimotohno K. Characterization of T cells immortalized by Tax1 of human T-cell leukemia virus type 1.Blood. 1995;86:4243–4249.

    Google Scholar 

  16. Lacoste J, Cohen L, Hiscott J. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I.Virology. 1991;184:553–562.

    Article  PubMed  CAS  Google Scholar 

  17. Iha H, Kasai T, Kibler KV, Iwanaga Y, Tsurugi K, Jeang KT. Pleiotropic effects of HTLV type 1 Tax protein on cellular metabolism: mitotic checkpoint abrogation and NF-κB activation.AIDS Res Hum Retroviruses. 2000;16:1633–1638.

    Article  PubMed  CAS  Google Scholar 

  18. Jeang KT. Functional activities of the human T-cell leukemia virus type I Tax oncoprotein: cellular signaling through NF-κB.Cytokine Growth Factor Rev. 2001;12:207–217.

    Article  PubMed  CAS  Google Scholar 

  19. Li XH, Gaynor RB. Mechanisms of NF-κB activation by the HTLV type 1 tax protein.AIDS Res Hum Retroviruses. 2000;16:1583–1590.

    Article  PubMed  CAS  Google Scholar 

  20. Peloponese JM, Yeung ML, Jeang KT. Modulation of nuclear factor- κB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation.Immunol Res. 2006; 34:1–12.

    Article  PubMed  CAS  Google Scholar 

  21. Lacoste J, Lanoix J, Pépin, Hiscott J. Interactions between HTLV-I Tax and NF-kappa B/Rel proteins in T cells.Leukemia.1994;8(suppl 1):S71-S76.

    PubMed  Google Scholar 

  22. Sun SC, Elwood J, Beraud C, Greene WC. Human T-cell leukemia virus type I Tax activation of NF-kappa B/Rel involves phospho- rylation and degradation of I kappa B alpha and RelA (p65)-medi- ated induction of the c-rel gene.Mol Cell Biol. 1994;14:7377–7384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lacoste J, Petropoulos L, Pépin N, Hiscott J. Constitutive phosphoryl- ation and turnover of I kappa B alpha in human T-cell leukemia virus type I-infected and Tax-expressing T cells.J Virol. 1995;69:564–569.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Harhaj EW, Sun SC. IKKγ serves as a docking subunit of the IκB kinase (IKK) and mediates interaction of IKK with the human T-cell leukemia virus Tax protein.J Biol Chem. 1999;274:22911–22914.

    Article  PubMed  CAS  Google Scholar 

  25. Iha H, Kibler KV, Yedavalli VR, et al. Segregation of NF-κB activation through NEMO/IKKγ by Tax and TNFα: implications for stimulus-specific interruption of oncogenic signaling.Oncogene. 2003;22:8912–8923.

    Article  PubMed  CAS  Google Scholar 

  26. Schmidt-Supprian M, Bloch W, Courtois G, et al. NEMO/IKKγ-defi- cient mice model incontinentia pigmenti.Mol Cell. 2000;5:981–992.

    Article  PubMed  CAS  Google Scholar 

  27. Xiao G, Harhaj EW, Sun SC. Domain-specific interaction with the IκB kinase (IKK) regulatory subunit IKKγ is an essential step in tax- mediated activation of IKK.J Biol Chem. 2000;275:34060–34067.

    Article  PubMed  CAS  Google Scholar 

  28. Jin DY, Giordano V, Kibler KV, Nakano H, Jeang KT. Role of adapter function in oncoprotein-mediated activation of NF-κB: human T-cell leukemia virus type I Tax interacts directly with IκB kinase γ.J Biol Chem. 1999;274:17402–17405.

    Article  PubMed  CAS  Google Scholar 

  29. Chu ZL, Shin YA, Yang JM, DiDonato JA, Ballard DW. IKKγ mediates the interaction of cellular IκB kinases with the tax transforming protein of human T cell leukemia virus type 1.J Biol Chem. 1999;274:15297–15300.

    Article  PubMed  CAS  Google Scholar 

  30. Sun SC, Ballard DW. Persistent activation of NF-κB by the tax transforming protein of HTLV-1: hijacking cellular IκB kinases.Oncogene. 1999;18:6948–6958.

    Article  PubMed  CAS  Google Scholar 

  31. Sun SC, Harhaj EW, Xiao G, Good L. Activation of I-κB kinase by the HTLV type 1 Tax protein: mechanistic insights into the adaptor function of IKKγ.AIDS Res Hum Retroviruses. 2000;16:1591–1596.

    Article  PubMed  CAS  Google Scholar 

  32. Beraud C, Sun SC, Ganchi P, Ballard DW, Greene WC. Human T-cell leukemia virus type I Tax associates with and is negatively regulated by the NF-kappa B2 p100 gene product: implications for viral latency.Mol Cell Biol. 1994;14:1374–1382.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Higuchi M, Matsuda T, Mori N, et al. Elevated expression of CD30 in adult T-cell leukemia cell lines: possible role in constitutive NF-κB activation.Retrovirology. 2005;2:29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tamiya S, Matsuoka M, Etoh K, et al. Two types of defective human T-lymphotropic virus type I provirus in adult T-cell leukemia.Blood. 1996;88:3065–3073.

    PubMed  CAS  Google Scholar 

  35. Furukawa Y, Kubota R, Tara M, Izumo S, Osame M. Existence of escape mutant in HTLV-Itax during the development of adult T-cell leukemia.Blood. 2001;97:987–993.

    Article  PubMed  CAS  Google Scholar 

  36. Fujii M, Niki T, Mori T, et al. HTLV-1 Tax induces expression of various immediate early serum responsive genes.Oncogene. 1991;6:1023–1029.

    PubMed  CAS  Google Scholar 

  37. Hall WW, Fujii M. Deregulation of cell-signaling pathways in HTLV-1 infection.Oncogene. 2005;24:5965–5975.

    Article  PubMed  CAS  Google Scholar 

  38. Matsumoto K, Shibata H, Fujisawa JI, et al. Human T-cell leukemia virus type 1 Tax protein transforms rat fibroblasts via two distinct pathways.J Virol. 1997;71:4445–4451.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Peloponese JM Jr, Jeang KT. Role for Akt/protein kinase B and activator protein-1 in cellular proliferation induced by the human T-cell leukemia virus type 1 tax oncoprotein.J Biol Chem. 2006;281:8927–8938.

    Article  PubMed  CAS  Google Scholar 

  40. Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN. Activated AKT regulates NF-κB activation, p53 inhibition and cell survival in HTLV-1-transformed cells.Oncogene. 2005;24:6719–6728.

    Article  PubMed  CAS  Google Scholar 

  41. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival.J Cell Mol Med. 2005;9:59–71.

    Article  PubMed  CAS  Google Scholar 

  42. Testa JR, Bellacosa A. AKT plays a central role in tumorigenesis.Proc Natl Acad Sci U S A.2001;98:10983–10985.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human malignancy.Cell Signal. 2002;14:381–395.

    Article  PubMed  CAS  Google Scholar 

  44. Ikezoe T, Nishioka C, Bandobashi K, et al. Longitudinal inhibition of PI3K/Akt/mTOR signaling by LY294002 and rapamycin induces growth arrest of adult T-cell leukemia cells.Leuk Res. 2006;31:673–682.

    Article  PubMed  CAS  Google Scholar 

  45. Boxer LM, Dang CV. Translocations involvingc-myc andc-myc function.Oncogene. 2001;20:5595–5610.

    Article  CAS  Google Scholar 

  46. Johnson DG, DeGregori J. Putting the oncogenic and tumor sup- pressive activities of E2F into context.Curr Mol Med. 2006;6:731–738.

    PubMed  CAS  Google Scholar 

  47. Chlichlia K, Busslinger M, Peter ME, et al. ICE-proteases mediate HTLV-I Tax-induced apoptotic T-cell death.Oncogene. 1997;14:2265–2272.

    Article  PubMed  CAS  Google Scholar 

  48. Los M, Khazaie K, Schulze-Osthoff K, Baeuerle PA, Schirrmacher V, Chlichlia K. Human T cell leukemia virus-I (HTLV-I) Tax-mediated apoptosis in activated T cells requires an enhanced intracellu- lar prooxidant state.J Immunol. 1998;161:3050–3055.

    PubMed  CAS  Google Scholar 

  49. Mori N, Fujii M, Cheng G, et al. Human T-cell leukemia virus type I tax protein induces the expression of anti-apoptotic gene Bcl-xL in human T-cells through nuclear factor-κB and c-AMP responsive element binding protein pathways.Virus Genes. 2001;22:279–287.

    Article  PubMed  CAS  Google Scholar 

  50. Portis T, Harding JC, Ratner L. The contribution of NF-κB activity to spontaneous proliferation and resistance to apoptosis in human T-cell leukemia virus type 1 Tax-induced tumors.Blood.2001;98:1200–1208.

    Article  PubMed  CAS  Google Scholar 

  51. Kawakami H, Tomita M, Matsuda T, et al. Transcriptional activation of survivin through the NF-κB pathway by human T-cell leukemia virus type I tax.Int J Cancer. 2005;115:967–974.

    Article  PubMed  CAS  Google Scholar 

  52. Akagi T, Ono H, Tsuchida N, Shimotohno K. Aberrant expression and function of p53 in T-cells immortalized by HTLV-I Tax1.FEBS Lett. 1997;406:263–266.

    Article  PubMed  CAS  Google Scholar 

  53. Mulloy JC, Kislyakova T, Cereseto A, et al. Human T-cell lym- photropic/leukemia virus type 1 Tax abrogates p53-induced cell cycle arrest and apoptosis through its CREB/ATF functional domain.J Virol. 1998;72:8852–8860.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Pise-Masison CA, Choi KS, Radonovich M, Dittmer J, Kim SJ, Brady JN. Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein.J Virol. 1998;72:1165–1170.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Pise-Masison CA, Radonovich M, Sakaguchi K, Appella E, Brady JN. Phosphorylation of p53: a novel pathway for p53 inactivation in human T-cell lymphotropic virus type 1-transformed cells.J Virol. 1998;72:6348–6355.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Kao SY, Lemoine FJ, Marriott SJ. Suppression of DNA repair by human T cell leukemia virus type 1 Tax is rescued by a functional p53 signaling pathway.J Biol Chem. 2000;275:35926–35931.

    Article  PubMed  CAS  Google Scholar 

  57. Ariumi Y, Kaida A, Lin JY, et al. HTLV-1 tax oncoprotein represses the p53-mediated trans-activation function through coactivator CBP sequestration.Oncogene. 2000;19:1491–1499.

    Article  PubMed  CAS  Google Scholar 

  58. Haoudi A, Semmes OJ. The HTLV-1 tax oncoprotein attenuates DNA damage induced G1 arrest and enhances apoptosis in p53 null cells.Virology. 2003;305:229–239.

    Article  PubMed  CAS  Google Scholar 

  59. Jeong SJ, Radonovich M, Brady JN, Pise-Masison CA. HTLV-I Tax induces a novel interaction between p65/RelA and p53 that results in inhibition of p53 transcriptional activity.Blood. 2004;104:1490–1497.

    Article  PubMed  CAS  Google Scholar 

  60. Miyazato A, Sheleg S, Iha H, Li Y, Jeang KT. Evidence for NF-κB- and CBP-independent repression of p53’s transcrip- tional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts.J Virol. 2005;79:9346–9350.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Tabakin-Fix Y, Azran I, Schavinky-Khrapunsky Y, Levy O, Aboud M. Functional inactivation of p53 by human T-cell leukemia virus type 1 Tax protein: mechanisms and clinical implications.Carcino- genesis. 2006;27:673–681.

    Article  CAS  Google Scholar 

  62. Marriott SJ, Semmes OJ. Impact of HTLV-I Tax on cell cycle progression and the cellular DNA damage repair response.Oncogene. 2005;24:5986–5995.

    Article  PubMed  CAS  Google Scholar 

  63. Neuveut C, Jeang KT. HTLV-I Tax and cell cycle progression.Prog Cell Cycle Res. 2000;4:157–162.

    Article  PubMed  CAS  Google Scholar 

  64. Akagi T, Ono H, Shimotohno K. Expression of cell-cycle regulatory genes in HTLV-I infected T-cell lines: possible involvement of Tax1 in the altered expression of cyclin D2, p18Ink4 and p21Waf1/Cip1/Sdi1.Oncogene. 1996;12:1645–1652.

    PubMed  CAS  Google Scholar 

  65. Neuveut C, Jeang KT. Cell cycle dysregulation by HTLV-I: role of the tax oncoprotein.Front Biosci. 2002;7:d157-d163.

    Article  PubMed  CAS  Google Scholar 

  66. Dictor M, Ehinger M, Mertens F, Akervall J, Wennerberg J. Abnormal cell cycle regulation in malignancy.Am J Clin Pathol. 1999;112(suppl 1):S40-S52.

    Google Scholar 

  67. Johnson DG, Schneider-Broussard R. Role of E2F in cell cycle control and cancer.Front Biosci. 1998;3:d447-d448.

    Article  PubMed  CAS  Google Scholar 

  68. Hatakeyama M, Weinberg RA. The role of RB in cell cycle control.Prog Cell Cycle Res. 1995;1:9–19.

    Article  PubMed  CAS  Google Scholar 

  69. Yamasaki L. Role of the RB tumor suppressor in cancer.Cancer Treat Res. 2003;115:209–239.

    Article  PubMed  CAS  Google Scholar 

  70. Fraedrich K, Müller B, Grassmann R. The HTLV-1 Tax protein binding domain of cyclin-dependent kinase 4 (CDK4) includes the regulatory PSTAIRE helix.Retrovirology. 2005;2:54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Neuveut C, Low KG, Maldarelli F, et al. Human T-cell leukemia virus type 1 Tax and cell cycle progression: role of cyclin D-cdk and p110Rb.Mol Cell Biol. 1998;18:3620–3632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Lemasson I, Thébault S, Sardet C, Devaux C, Mesnard JM. Activation of E2F-mediated transcription by human T-cell leukemia virus type I Tax protein in a p16INK4A-negative T-cell line.J Biol Chem. 1998;273:23598–23604.

    Article  PubMed  CAS  Google Scholar 

  73. Liang MH, Geisbert T, Yao Y, Hinrichs SH, Giam CZ. Human T- lymphotropic virus type 1 oncoprotein tax promotes S-phase entry but blocks mitosis.J Virol. 2002;76:4022–4033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kehn K, Deng L, de laFuenteC, et al. The role of cyclin D2 and p21/waf1 in human T-cell leukemia virus type 1 infected cells.Retrovirology. 2004;1:6.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang L, Deng L, Wu K, et al. Inhibition of HTLV-1 transcription by cyclin dependent kinase inhibitors.Mol Cell Biochem. 2002;237:137–153.

    Article  PubMed  CAS  Google Scholar 

  76. Loeb KR, Loeb LA. Significance of multiple mutations in cancer.Carcinogenesis. 2000;21:379–385.

    Article  PubMed  CAS  Google Scholar 

  77. Majone F, Semmes OJ, Jeang KT. Induction of micronuclei by HTLV- I Tax: a cellular assay for function.Virology. 1993;193:456–459.

    Article  PubMed  CAS  Google Scholar 

  78. Marriott SJ, Lemoine FJ, Jeang KT. Damaged DNA and miscounted chromosomes: human T cell leukemia virus type I tax oncoprotein and genetic lesions in transformed cells.J Biomed Sci. 2002;9:292–298.

    Article  PubMed  CAS  Google Scholar 

  79. Jeang KT, Widen SG, Semmes OJ, Wilson SH. HTLV-I trans-activator protein, tax, is a trans-repressor of the human beta-polymerase gene.Science. 1990;247:1082–1084.

    Article  PubMed  CAS  Google Scholar 

  80. Kao SY, Marriott SJ. Disruption of nucleotide excision repair by the human T-cell leukemia virus type 1 Tax protein.J Virol. 1999;73:4299–4304.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Lemoine FJ, Kao SY, Marriott SJ. Suppression of DNA repair by HTLV type 1 Tax correlates with Tax trans-activation of proliferating cell nuclear antigen gene expression.AIDS Res Hum Retroviruses. 2000;16:1623–1627.

    Article  PubMed  CAS  Google Scholar 

  82. Gabet AS, Mortreux F, Charneau P, et al. Inactivation ofhTERT transcription by Tax.Oncogene. 2003;22:3734–3741.

    Article  PubMed  CAS  Google Scholar 

  83. Majone F, Jeang KT. Clastogenic effect of the human T-cell leukemia virus type I Tax onco-protein correlates with unstablized DNA breaks.J Biol Chem. 2000;275:32906–32910.

    Article  PubMed  CAS  Google Scholar 

  84. Majone F, Luisetto R, Zamboni D, Iwanaga Y, Jeang KT. Ku protein as a potential human T-cell leukemia virus type 1 (HTLV-1) Tax target in clastogenic chromosomal instability of mammalian cells.Retrovirology. 2005;2:45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. de laFuenteC, Gupta MV, Klase Z, et al. Involvement of HTLV-I Tax and CREB in aneuploidy: a bioinformatics approach.Retrovirology. 2006;3:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rajagopalan H, Lengauer C. Aneuploidy and cancer.Nature. 2004; 432:338–341.

    Article  PubMed  CAS  Google Scholar 

  87. Sen S. Aneuploidy and cancer.Curr Opin Oncol. 2000;12:82–88.

    Article  PubMed  CAS  Google Scholar 

  88. Lengauer C. Aneuploidy and genetic instability in cancer.Semin Cancer Biol. 2005;15:1.

    Article  PubMed  Google Scholar 

  89. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers.Nature. 1998;396:643–649.

    Article  PubMed  CAS  Google Scholar 

  90. Salisbury JL, D’Assoro AB, Lingle WL. Centrosome amplification and the origin of chromosomal instability in breast cancer.J Mammary Gland Biol Neoplasia. 2004;9:275–283.

    Article  PubMed  Google Scholar 

  91. Schneeweiss A, Sinn HP, Ehemann V, et al. Centrosomal aberrations in primary invasive breast cancer are associated with nodal status and hormone receptor expression.Int J Cancer. 2003;107:346–352.

    Article  PubMed  CAS  Google Scholar 

  92. Pihan GA, Purohit A, Wallace J, Malhotra R, Liotta L, Doxsey SJ. Centrosome defects can account for cellular and genetic changes that characterize prostate cancer progression.Cancer Res. 2001;61:2212–2219.

    PubMed  CAS  Google Scholar 

  93. Tarapore P, Fukasawa K. Loss of p53 and centrosome hyperampli- fication.Oncogene. 2002;21:6234–6240.

    Article  PubMed  CAS  Google Scholar 

  94. Minn AJ, Boise LH, Thompson CB. Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage.Genes Dev. 1996;10:2621–2631.

    Article  PubMed  CAS  Google Scholar 

  95. Duensing S, Duensing A, Crum CP, Munger K. Human papillo- mavirus type 16 E7 oncoprotein-induced abnormal centrosome synthesis is an early event in the evolving malignant phenotype.Cancer Res. 2001;61:2356–2360.

    PubMed  CAS  Google Scholar 

  96. Duensing S, Munger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability.Oncogene. 2002;21:6241–6248.

    Article  PubMed  CAS  Google Scholar 

  97. Haoudi A, Daniels RC, Wong E, Kupfer G, Semmes OJ. Human T-cell leukemia virus-I tax oncoprotein functionally targets a subnuclear complex involved in cellular DNA damage-response.J Biol Chem. 2003;278:37736–37744.

    Article  PubMed  CAS  Google Scholar 

  98. Ching YP, Chan SF, Jeang KT, Jin DY. The retroviral oncoprotein Tax targets the coiled-coil centrosomal protein TAX1BP2 to induce centrosome overduplication.Nat Cell Biol. 2006;8:717–724.

    Article  PubMed  CAS  Google Scholar 

  99. Peloponese JM Jr, Haller K, Miyazato A, Jeang KT. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein.Proc Natl Acad Sci U S A.2005;102:18974–18979.

    Article  CAS  Google Scholar 

  100. Afonso PV, Zamborlini A, Saib A, Mahieux R. Centrosome and retroviruses: the dangerous liaisons.Retrovirology. 2007;4:27.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Musacchio A, Hardwick KG. The spindle checkpoint: structural insights into dynamic signalling.Nat Rev Mol Cell Biol. 2002;3:731–741.

    Article  PubMed  CAS  Google Scholar 

  102. Taylor SS, Scott MI, Holland AJ. The spindle checkpoint: a quality control mechanism which ensures accurate chromosome segregation.Chromosome Res. 2004;12:599–616.

    Article  PubMed  CAS  Google Scholar 

  103. Saeki A,Tamura S, Ito N, et al. Frequent impairment of the spindle assembly checkpoint in hepatocellular carcinoma.Cancer. 2002;94:2047–2054.

    Article  PubMed  CAS  Google Scholar 

  104. Dash BC, El-Deiry WS. Cell cycle checkpoint control mechanisms that can be disrupted in cancer.Methods Mol Biol. 2004; 280:99–161.

    PubMed  CAS  Google Scholar 

  105. Sze KM, Ching YP, Jin DY, Ng IO. Association of MAD2 expression with mitotic checkpoint competence in hepatoma cells.J Biomed Sci. 2004;11:920–927.

    Article  PubMed  CAS  Google Scholar 

  106. Kasai T, Iwanaga Y, Iha H, Jeang KT. Prevalent loss of mitotic spindle checkpoint in adult T-cell leukemia confers resistance to microtubule inhibitors.J Biol Chem. 2002;277:5187–5193.

    Article  PubMed  CAS  Google Scholar 

  107. Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1.Cell. 1998;93:81–91.

    Article  PubMed  CAS  Google Scholar 

  108. Liu B, Hong S,Tang Z, Yu H, Giam CZ. HTLV-I Tax directly binds the Cdc20-associated anaphase-promoting complex and activates it ahead of schedule.Proc Natl Acad Sci U S A. 2005;102:63–68.

    Article  PubMed  CAS  Google Scholar 

  109. Page AM, Hieter P. The anaphase promoting complex.Cancer Surv. 1997;29:133–150.

    PubMed  CAS  Google Scholar 

  110. Castro A, Bernis C, Vigneron S, Labbé JC, Lorca T. The anaphase- promoting complex: a key factor in the regulation of cell cycle.Oncogene. 2005;24:314–325.

    Article  PubMed  CAS  Google Scholar 

  111. Sheleg SV, Peloponese JM, Chi YH, Li Y, Eckhaus M, Jeang KT. Evidence for co-operative transformingactivity of human pituitary tumor transforming gene (PTTG) and HTLV-1 Tax.J Virol. 2007. In press. Published online May 16, 2007: JVI.00555–00507.

  112. Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard JM. The complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a bZIP transcription factor that down-regulates viral transcription.J Virol. 2002;76:12813–12822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Larocca D, Chao LA, Seto MH,Brunck TK. Human T-cell leukemia virus minus strand transcription in infected T-cells.Biochem Biophys Res Commun. 1989;163:1006–1013.

    Article  PubMed  CAS  Google Scholar 

  114. Mesnard JM, Barbeau B, Devaux C. HBZ, a new important player in the mystery of adult T-cell leukemia.Blood. 2006;108:3979–3982.

    Article  PubMed  CAS  Google Scholar 

  115. Satou Y, Yasunaga J, Yoshida M, Matsuoka M.HTLV-I basic leucine zipper factor gene mRNA supports proliferation of adult T cell leukemia cells.Proc Natl Acad Sci U S A. 2006;103:720–725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Cavanagh MH, Landry S, Audet B, et al. HTLV-I antisense transcripts initiating in the 3′LTR are alternatively spliced and polyadenylated.Retrovirology. 2006;3:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Sibon D, Gabet AS, Zandecki M, et al. HTLV-1 propels untrans- formed CD4 lymphocytes into the cell cycle while protecting CD8 cells from death.J Clin Invest. 2006;116:974–983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Teh Jeang.

About this article

Cite this article

Peloponese, JM., Kinjo, T. & Jeang, KT. Human T-Cell Leukemia Virus Type 1 Tax and Cellular Transformation. Int J Hematol 86, 101–106 (2007). https://doi.org/10.1532/IJH97.07087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1532/IJH97.07087

Key words

Navigation