Characterization of Ficus benjamina and Artocarpus heterophyllus Proteases as Potential Rennet Alternatives

Andreas Binar Aji Sukmana(1), Indy Widyaningrum(2), Rischa Karmila Lani(3), Sri Kasmiyati(4),


(1) Faculty of Biology, Universitas Kristen Satya Wacana
(2) Faculty of Biology, Universitas Kristen Satya Wacana
(3) Faculty of Biology, Universitas Kristen Satya Wacana
(4) Faculty of Biology, Universitas Kristen Satya Wacana

Abstract

Rennet, a milk coagulant exhibiting proteolytic activity, is a crucial component in cheese industries. Its price and availability have discouraged the growth of some small scale cheese industries. Therefore, an alternative for rennet will be beneficial for the industries. Among other sources, plant proteases offer some advantages as rennet alternatives. This study aimed to investigate the potential of plant proteases obtained from the latex as potential rennet alternatives. A total of six plants from the genus Ficus and Artocarpus were screened for their proteolytic activity and milk coagulating ability. The screening indicated that all six tested plants displayed proteolytic activity at various levels, but only Ficus benjamina and Artocarpus heterophyllus produced a firm milk curd. Hence, both F. benjamina and A. heterophyllus were determined to be the most potential. Further characterizations suggested that F. benjamina and A. heterophyllus protease were optimum at pH 7.0 also at 50°C and 40°C, respectively. At their optimum conditions, both proteases exhibited a lower MCA/PA ratio than that of the rennet. This study contributed to scientific knowledge development by becoming the first to characterize the optimum conditions of F. benjamina and A. heterophyllus’ proteases, investigate their MCA/PA ratio, and compare their activity against commercial rennet. The examination of their potentials as rennet alternatives could benefit small cheese industries and the communities.

Keywords

A. heterophyllus; F. benjamina; Milk-Clotting; Proteolytic; Rennet

Full Text:

PDF

References

Afsharnezhad, M., Shahangian, S. S., & Sariri, R. (2019). A novel milk-clotting cysteine protease from Ficus johannis: Purification and characterization. International Journal of Biological Macromolecules, 121, 173–182.

Amira, A. B., Besbes, S., Attia, H., & Blecker, C. (2017). Milk-clotting properties of plant rennets and their enzymatic, rheological, and sensory role in cheese making: A review. International Journal of Food Properties, 20(sup1), S76–S93.

Benlounissi, A., Mechakra-Maza, A., Blum, L. J., & Marquette, C. A. (2014). Identification and characterization of milk-clotting proteases produced by two species of mold. African Journal of Biotechnology, 13(11).

Bouma, A., Durham, C. A., & Meunier-Goddik, L. (2014). Start-up and operating costs for artisan cheese companies. Journal of Dairy Science, 97(6), 3964–3972.

Cheese—Indonesia | Statista Market Forecast. (2020). Statista. https://www.statista.com/outlook/ 40010400/120/cheese/indonesia

Cupp-Enyard, C. (2008). Sigma’s Non-specific Protease Activity Assay—Casein as a Substrate. Journal of Visualized Experiments : JoVE, 19, 899.

Faccia, M., Picariello, G., Trani, A., Loizzo, P., Gambacorta, G., Lamacchia, C., & Di Luccia, A. (2012). Proteolysis of Cacioricotta cheese made from goat milk coagulated with caprifig (Ficus carica sylvestris) or calf rennet. European Food Research and Technology, 234(3), 527–533.

Fibriana, F., & Upaichit, A. (2015). Proteases from Latex of Euphorbia spp. And Its Application on Milk Clot Formation. Biosaintifika: Journal of Biology & Biology Education, 7.

Huang, X. W., Chen, L. J., Luo, Y. B., Guo, H. Y., & Ren, F. Z. (2011). Purification, characterization, and milk coagulating properties of ginger proteases. Journal of Dairy Science, 94(5), 2259–2269.

Kethireddipalli, P., & Hill, A. R. (2015). Rennet Coagulation and Cheesemaking Properties of Thermally Processed Milk: Overview and Recent Developments. Journal of Agricultural and Food Chemistry, 63(43), 9389–9403.

Mansur, A. (2018). Menakar Peluang dan Potensi Usaha Keju. http://www.neraca.co.id/article/ 99191/menakar-peluang-dan-potensi-usaha-keju

Mazorra-Manzano, M. A., Perea-Gutiérrez, T. C., Lugo-Sánchez, M. E., Ramirez-Suarez, J. C., Torres-Llanez, M. J., González-Córdova, A. F., & Vallejo-Cordoba, B. (2013). Comparison of the milk-clotting properties of three plant extracts. Food Chemistry, 141(3), 1902–1907.

Mótyán, J. A., Tóth, F., & Tőzsér, J. (2013). Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules, 3(4), 923–942.

Pontual, E. V., Carvalho, B. E. A., Bezerra, R. S., Coelho, L. C. B. B., Napoleão, T. H., & Paiva, P. M. G. (2012). Caseinolytic and milk-clotting activities from Moringa oleifera flowers. Food Chemistry, 135(3), 1848–1854.

Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Biochemistry, 59, 1–41.

Sharma, A., Kumari, M., & Jagannadham, M. V. (2012). Religiosin C, a cucumisin-like serine protease from Ficus religiosa. Process Biochemistry, 47(6), 914–921.

Silvestre, M. P. C., Carreira, R. L., Silva, M. R., Corgosinho, F. C., Monteiro, M. R. P., & Morais, H. A. (2012). Effect of pH and Temperature on the Activity of Enzymatic Extracts from Pineapple Peel. Food and Bioprocess Technology, 5(5), 1824–1831.

Siritapetawee, J., Thammasirirak, S., & Samosornsuk, W. (2012). Antimicrobial activity of a 48-kDa protease (AMP48) from Artocarpus heterophyllus latex. European Review for Medical and Pharmacological Sciences, 16(1), 132–137.

Siti Balqis, Z., & Rosma, A. (2011). Artocarpus integer leaf protease: Purification and characterisation. Food Chemistry, 129(4), 1523–1529.

Siti-Balqis, Z., & Rosma, A. (2020). Serine protease from Artocarpus altilis (breadfruit) latex. IOP Conference Series: Earth and Environmental Science, 411, 012014.

Somashekhar, M., Nayeem, N., & Sonnad, B. (2013). A review on family Moraceae(mulberry) with a focus on Artocarpus species. World Journal of Pharmacy and Pharmaceutical Sciences (WJPPS), 2(5), 2614–2626.

Sulmiyati, S. (2017). Karakteristik Fisik dan Kimia Air Dadih (Whey) Dangke dengan Level Enzim Papain yang Berbeda (Chemical and Physical Properties of Dangke Whey Using Different Levels of Papain Enzyme). Jurnal Ilmu dan Teknologi Peternakan, 5(2), 102–106.

Wahyuni, S., Susanti, R., & Iswari, R. S. (2015). Isolation and caracterization of ficin enzyme from Ficus septica Burm F stem latex. Indonesian Journal of Biotechnology, 20(2), 161–166.

Wanderley, L. F., Soares, A. M. dos S., Silva, C. R. e, Figueiredo, I. M. de, Ferreira, A. T. da S., Perales, J., Mota, H. R. de O., Oliveira, J. T. A., Costa Junior, L. M., Wanderley, L. F., Soares, A. M. dos S., Silva, C. R. e, Figueiredo, I. M. de, Ferreira, A. T. da S., Perales, J., Mota, H. R. de O., Oliveira, J. T. A., & Costa Junior, L. M. (2018). A cysteine protease from the latex of Ficus benjamina has in vitro anthelmintic activity against Haemonchus contortus. Revista Brasileira de Parasitologia Veterinária, 27(4), 473–480.

Wu, F.-C., Chang, C.-W., & Shih, I.-L. (2013). Optimization of the production and characterization of milk clotting enzymes by Bacillus subtilis natto. SpringerPlus, 2.

Refbacks

  • There are currently no refbacks.




Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.